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Abstract— We consider structured online convex optimization
(OCO) with bandit feedback, where either the loss function
is smooth or the constraint set is strongly convex. Projection-
free methods are among the most popular and computationally
efficient algorithms for solving this problem, mainly due to their
ability to handle convex constraints appearing in machine learn-
ing for which computing projections is often impractical in high-
dimensional settings. Despite the improved regret bound results
for the full-information setting where the gradients of the func-
tions are readily available, it remains unclear whether simple
projection-free zero-order algorithms become more efficient for
structured OCO problems in the case when multiple function
values can be sampled at each time instance. In this paper, we
develop some simple projection-free algorithms and prove that
they indeed achieve the same improved regret bounds as the full-
information case under various additional problem structures.
This implies that leveraging the structural properties of the
problem compensates for the lack of access to the gradients.
Experiments on the online matrix completion reveal several
attractive advantages of the proposed algorithms, including
their simplicity, easy implementation, and effectiveness, as they
outperform other competing algorithms.

I. INTRODUCTION
Recent years have witnessed a large number of projection-

based online algorithms, including online gradient descent
(OGD) [35], online Newton step (ONS) [17], follow-the-
regularized- leader (FTRL) [31] and follow-the-perturbed-
leader (FPL) [24], which yield optimal regret bounds under
different scenarios. However, a significant barrier to the
direct application of projection-based online algorithms in
many machine learning applications lies in the computational
bottleneck of performing a projection over complicated
constraint sets in high-dimensional settings. Practitioners
have long been aware of this computational bottleneck of the
projection-based online algorithms in matrix completion [33]
and collaborative filtering [25]. Indeed, the projection amounts
to computing the singular value decomposition (SVD) of a
matrix, whose cost increases dramatically as the dimension
grows. This difficulty motivates the development of the so-
called projection-free online algorithm [18], which is indeed
an online variant of the classical Frank-Wolfe algorithm [10],
[28], [22]. This approach replaces the projection step with a
linear optimization over the constraint set, which is proven
to be efficient. The algorithm is sometimes by orders of mag-
nitude faster than projection-based online algorithms when
the constraint sets arise from a combinatorial structure, e.g.,
paths/matches/spanning trees in graphs or matroids, or from
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a low-rank matrix structure, as demonstrated by encouraging
empirical results in low-rank matrix approximation [23], [30],
multitask learning [8], structural support vector machine [26],
semidefinite programming [27] and image processing [15].
From a theoretical point of view, for an online optimization
problem with the time horizon T , the online Frank-Wolfe
(OFW) algorithm and its variants are efficient in the sense
that they achieve the sublinear regret bound of O(T 3/4) when
the loss function is convex [18] and improved regret bound
of O(T 2/3) or even O(

√
T ) under additional assumptions on

the smoothness of the loss function or the strong convexity
of the constraint set [21], [34], [13].

The above-mentioned online algorithms require a gradient
oracle for all loss functions ft such that the learner can update
the next decision xt+1 by using the gradient information
∇ft(xt). Unfortunately, for many problems in optimization,
machine learning and statistics [29], [14], [2], [1], [7], the
only information that a learner can observe at iteration t
is the loss ft because the direct calculation of the gradient
may be computationally infeasible, expensive, or impossible.
We refer to online convex optimization setting with zero-
order information or bandit feedback [3], [20]. This setting
necessitates an accurate estimation of the gradient information,
making the development of efficient learning algorithms
significantly more challenging. However, if the function ft
can be evaluated at two points or multiple points, some of
the difficulties inherent in optimization using only a single
function evaluation can be alleviated [1], [7]. Such multi-
point settings are useful for online optimization problems in
which the adversary is oblivious (the loss functions f1, f2, . . .
are chosen beforehand and do not depend on the decisions
of the learner) and multiple function values can be sampled
for a given function ft. Applications of such bandit problems
include online auctions and advertisement selection for search
engines.

There are several attempts to adapt the OGD and OFW
algorithms to the zero-order online optimization setting and
we refer the reader to Section 2 for more details. Recently,
it has been shown in [12], [13] that the state-of-the-art
projection-free regret bounds for the full information setting
(where the exact gradient is available) and single-point bandit
feedback setting match up to a factor in log(T ), provided
that the functions are either convex or strongly convex. Both
of those algorithms are, however, double-loop algorithms and
thus relatively complicated to implement. More importantly,
it is well-known that projection-free algorithms can benefit
from additional structures existing in real-world applications
for the full information setting, such as the smoothness of the



loss function [21] or the strong convexity of the constraint
set [34]. Based on this observation, it is natural to ask the
important question: Can the simplest projection-free online
optimization algorithm with bandit feedback achieve the same
regret bounds for the full-information setting under additional
problem structures if multi-point bandit feedback is available?

In this work, we provide an affirmative answer to the above
question, and develop some improved regret bounds for two
algorithms which are based on OFW [18] and smoothed
FPL [21] with a multiple-point estimator [1], [32]. When
the constraint set is strongly convex, the first algorithm
and its variant achieve the expected regret bounds Õ(T 2/3)
and Õ(

√
T ) for convex and strongly convex loss functions,

respectively. When the loss functions are smooth, the second
algorithm attains the expected regret bound O(T 2/3). These
bounds match the existing bounds for the full-information
setting. We also develop some regret bounds that hold with
high probability. Experiments on the online matrix completion
demonstrate the benefit of using a two-point estimator and
levering additional problem structures, and show achieving
the same regret bound as if the gradient was readily available.

Notation. We use bold lower-case letters to denote vectors,
as in x, and calligraphic upper case letters to denote sets,
as in X . The sets of real numbers and natural numbers are
shown as R and N, respectively. We denote by Sd and Bd the
unit sphere and ball in Rd, and u ∼ Sd and u ∼ Bd mean
that u is a random vector sampled uniformly from Sd and
Bd, respectively. For a scalar r > 0, we denote rBd as the
ball with radius r. The notation [T ] refers to {1, 2, . . . , T} for
some integer T > 0. The notations Eξ[·] and E[·] refer to the
expectation over the random variable ξ and the expectation
over all of the randomness. For a differentiable function f :
Rd → R, let ∇f(x) denote the gradient of f at x. For a scalar
a, let |a| denote its absolute value. For vectors x,y ∈ Rd,
let ‖x‖ denote the `2-norm and 〈x,y〉 be the inner product.
We also define the set Xδ = {(1 − δ)x | x ∈ X} given a
constant δ ∈ [0, 1]. The notation Ai refers to Algorithm i.
Lastly, given the number of prediction rounds T , the notation
a = O(b(T )) means a ≤ C · b(T ) for some constant C > 0
that is independent of T . The notation dxe maps x to the
least integer greater than or equal to x.

II. PRELIMINARIES

According to [16], in online convex optimization with a
bandit feedback setting, an online learner repeatedly chooses
a decision xt from a convex and compact set K ∈ Rd on
round t ∈ [T ], and observes the associated loss ft (xt), where
T is known in advance and ft : K → R is a convex and
Lipschitz adversarial function. Besides the loss oracle ft, the
learner does not gain any additional knowledge of ft. The
goal is to find an algorithm A for generating the sequence
{xt}t≥1 such that the expected regret bound E [RT (A)] on
T is minimized where RT (A) is defined as

T∑
t=1

ft (xt)−min
x∈K

T∑
t=1

ft(x).

For the multi-point bandit setting [1], the player queries each
loss function at k randomized points yt,1, . . . ,yt,k, rather
than at a single point. In this model, the regret is defined as

RT (A) =
1

k

T∑
t=1

k∑
i=1

ft (yt,i)−min
x∈K

T∑
t=1

ft(x)

Similarly to [5], we assume that the adversary is oblivious,
meaning that the loss functions ft’s are chosen beforehand
and do not depend on the decisions of the learner. Throughout
this paper, we use some standard assumptions given below.

Assumption 1. The constrained action set K ⊂ Rd is convex,
compact and contains the origin 0.

Assumption 2. For every iteration t ∈ N, the loss function
ft : K → R is convex and differentiable.

Because of the compactness of the constraint set, let R
denote an upper bound on the norm of all points in the set,
i.e., ‖x‖ ≤ R for all x ∈ K, and let L denote an upper bound
on the gradient norms over the set, i.e., ‖∇ft(x)‖ ≤ L for
all x ∈ K.

A. Linear optimization oracle

Consider the following well-known linear optimization
oracle and linear value oracle over the constraint set K:

LPK(g) = argmax
x∈K

g>x, for all g ∈ Rd,

VALK(g) = max
x∈K

g>x, for all g ∈ Rd.

The focus of this work is on the bandit setting where
performing a projection on the constraint set K, as a quadratic
optimization over K, has a significantly higher computational
cost than solving a linear optimization over K. This scenario
covers a wide range of application problems, for which
projection-based bandit algorithms (e.g.,[9], [1], [19], [4])
are inferior to projection-free bandit algorithms (e.g., [5],
[12]). Moreover, it follows from the compactness of K and
the continuity of linear functions that LPK(g) exists for all
g ∈ Rd as stated below.

Lemma 1 (Lemma 2.4 in [21]). The linear value or-
acle VALK : Rd → R is well defined and sat-
isfies the properties VALK(g) = g>LPK(g) and
∇VALK(g) = LPK(g). Moreover, VALK is R-Lipschitz,
namely |VALK (g1)−VALK (g2)| ≤ R ‖g1 − g2‖ for all
g1,g2 ∈ Rd.

B. Gradient estimates from bandit feedback

In this subsection, we introduce a gradient estimator based
on a multi-point estimator. To this end, recall the one-point
estimator [9], where the gradient of ft at some point x is
estimated from a single random point evaluation. Let v ∼ Bd
be a uniformly random vector in the unit ball, and define the δ-
smoothed loss function f̂t,δ(x) = Ev∼Bd (ft(x+ δv)). Since
ft is convex and L-Lipschitz, its δ-smoothed version f̂t,δ is
also convex and differentiable. Then, a one-point estimator



can be used that queries the objective function ft(x) only
once:

g1
t =

d

δ
ft (x+ δut)ut, for some ut ∼ Sd, (1)

where g1t denotes an estimate of ∇ft(x).

Lemma 2 (Lemma 3.4 in [16]). The one-point estimator
defined in (1) is unbiased for the δ-smoothed function f̂t,δ in
the sense that ∇f̂t,δ(x) = Eut∼Sd

[
g1
t

]
. Furthermore, if the

loss function satisfies |ft(x)| ≤ M for all x ∈ K for some
constant M , then the estimated gradient vector satisfies the
bounded norm inequality

∥∥g1
t

∥∥ ≤ dM
δ .

On the other hand, f̂t,δ satisfactorily approximates ft when
δ is small since

∣∣∣f̂t,δ (xt)− ft (xt)∣∣∣ = O(δ) [16, Lemma 2.6].
Thus, it suffices to evaluate ft only at x + δu in order to
approximate the gradient of ft at x. A two-point estimator is
proposed in [1], in which the player estimates the gradient by
querying each loss function at two points. This requires using
two loss function values ft (xt + δut) and ft (xt − δut) to
construct a gradient estimator:

g2
t =

d

2δ
(ft (xt + δut)− ft (xt − δut))ut, (2)

for some ut ∼ Sd, where g2t denotes an estimate
of ∇ft(x). The intuition is readily seen in the one-
dimensional (d = 1) case, where the expectation of (2)
equals 1

2δ (ft (xt + δ)− ft (xt − δ)), which approximates
the derivative of ft at xt if δ is small enough. Moreover,
this estimator is different from the one-point estimator gt =
d
δ ft (xt + δut)ut since its norm does not grow unboundedly
as δ tends to zero.

Lemma 3 ([1]). The two-point estimator defined in (2) is
unbiased for the δ-smoothed function f̂t,δ in the sense that
Eut∼Sd

[
g2
t

]
= ∇f̂t,δ (xt). Moreover, it satisfies the bounded

norm inequality
∥∥g2

t

∥∥ ≤ Ld.

We make some remarks on the advantage of the two-point
estimator over the one-point estimator for projection-free
online convex optimization with bandit feedback. First, the
two-point estimator may seem unnecessary when the loss
functions are convex or strongly convex since a nontrivial
combination of the one-point estimator and an online Frank-
Wolfe algorithm achieves the same regret bounds as if the
gradient is precisely known [12], [13]. However, under addi-
tional problem structures where the complexity of the problem
reduces, the one-point estimator becomes a significant barrier
to a further improvement, since the function approximation
error O(δ) together with the norm of the one-point estimator
being O

(
δ−1
)

dominates the regret bound; see [12, Lemma
6] and [13, Lemma 8]. In contrast, the norm of the two-
point estimator is bounded, which can be leveraged to further
improve the regret bound.

Furthermore, if the player is allowed to query each function
ft at (d+ 1) points, a deterministic gradient estimator can

be constructed as follows:

g̃dt =
1

δ

d∑
i=1

(ft (xt + δei)− ft (xt)) ei (3)

where ei’s are the standard unit basis vectors and g̃dt denotes
an estimate of ∇ft(x). With an additional smoothness
assumption on the loss function, it is shown in [1] that
the deterministic gradient estimator in (3) satisfactorily
approximates the true gradient of the original loss function
ft.

Definition 1. A function f is `-smooth over K if
‖∇f(x)−∇f (x′)‖ ≤ ` ‖x− x′‖ for all x,x′ ∈ K.

Lemma 4 ([1]). If the loss function ft is `-smooth, the
(d+ 1)-point estimator defined in (3) satisfies the bounded
norm inequality

∥∥gdt ∥∥ ≤ Ld and the bounded estimation
error inequality ‖gdt− ∇ft (xt) ‖ ≤

√
d`δ
2 .

III. IMPROVED REGRET BOUNDS FOR STRONGLY
CONVEX SET

In this section, we present our algorithms along with their
formal regret guarantee for online convex optimization with
two-point bandit feedback, in the case when the constraint
set is strongly convex. We first introduce the definition of
strongly convex sets [11].

Definition 2. Given a strictly positive number α, a convex
set K ⊆ Rd is α-strongly convex with respect to the norm
‖ · ‖ if

γx+ (1− γ)x′ + αγ(1− γ)
2

‖x− x′‖2 u ∈ K

∀x,x′ ∈ K, ∀γ ∈ [0, 1] and ∀u ∈ Sd.

Remark 1. While strong convexity is a crucial property for
improving the convergence rate/regret bound of projection-
free algorithms, this assumption is not conservative and many
sets used to constrain the decisions in real-world problems
are strongly convex. Indeed, it is shown in [11] that various
balls induced by `p norms, Schatten norms and group norms
are strongly convex, where ‖ · ‖ refers to Frobenius norm for
the latter two cases. Moreover, the per-iteration cost is not a
concern since the linear optimization over most of these sets
is straightforward and admits a closed-form solution. For the
brevity of the presentation, we will only consider `2 norm in
the rest of the paper, but generalization to an arbitrary ‖ · ‖
is straightforward.

A. Bandit feedback and convex loss function

For online convex optimization with full information about
the gradient and general convex loss function, online Frank-
Wolfe (OFW) [34] chooses an arbitrary point x1 from K, and
then iteratively updates its decision via the formulas:

vt = LPK (−∇Ft (xt))
xt+1 = xt + σt (vt − xt)



where

Ft(x) = η

t−1∑
τ=1

〈∇fτ (xτ ) ,x〉+ ‖x− x1‖2

is the surrogate loss function, σt is chosen by the line search
as

σt = argmin
σ∈[0,1]

〈σ (vt − xt) ,∇Ft (xt)〉+ σ2 ‖vt − xt‖2

and η is a parameter. According to [34], OFW with an
appropriate choice of σt and η attains the regret bound of
O
(
T 2/3

)
over a strongly convex set K. However, in the bandit

setting, only the value function is available and the gradient
needs to be estimated. By using the two-point estimator (2)
whose bounded norm does not depend on the smoothing
parameter δ, we prove that OFW with a two-point bandit
feedback enjoys the following regret bound over strongly
convex sets.

Theorem 1. Let K be an α-strongly convex set with respect to
the `2 norm, rBd ⊆ K ⊆ RBd and C = max

(
16R2, 40963α2

)
.

Algorithm A1 with η = R
Ld(T+2)2/3

and δ = T−1 leads to
the regret bound

E [RT (A1)] ≤3L+ LR/r +RLd(T + 2)1/3

+ 4RLd(T + 2)2/3 +
3

2
L
√
C(T + 2)2/3.

Algorithm 1 2-point bandit algorithm with online Frank-
Wolfe (OFW)

1: Inputs: Horizon T , feasible set K, η, δ
2: Outputs: y1,1,y2,1, . . . ,y1,T ,y2,T

3: Initialization: x1 ∈ Kδ
4: for t = 1, 2, . . . ,T do
5: y1,t = xt + δut and y2,t = xt − δut where ut ∼ Sd
6: Play y1,t, y2,t and observe ft(y1,t), ft(y2,t)
7: gt =

d
2δ (ft(y1,t)− ft(y2,t))ut

8: Define Ft(x) = η
∑t−1
τ=1 〈gt,x〉+ ‖x− x1‖2

9: vt = LPKδ (−∇Ft (xt))
10: σt = argmin

σ∈[0,1]
〈σ (vt − xt) ,∇Ft (xt)〉+σ2 ‖vt − xt‖2

11: xt+1 = xt + σt (vt − xt)
12: end for

Before proving the above theorem, we first present some
useful lemmas below.

Lemma 5 ([31]). ] Let {wt}Tt=1 be a sequence of vectors
in Kδ such that wt = argminw∈Kδ

∑t−1
τ=1 fτ (w) + R(w),

where R(w) is an arbitrary strongly convex function. Then,
for every z ∈ Kδ , it holds that

T∑
t=1

(ft (wt)− ft(z)) ≤
T∑
t=1

(ft (wt)− ft (wt+1))

+R(z)−R (w1) .

Lemma 6 ([34]). Suppose that Kδ is an α-strongly convex set
with respect to the `2 norm. Define x∗t = argminx∈Kδ Ft(x)

for all t ∈ {1, 2, . . . , T +1}, where Ft(x) is defined in line 8
of Algorithm A1. Then, Algorithm A1 with η = R

Ld(T+2)2/3

leads to the inequality

Ft (xt)− Ft (x∗t ) ≤ εt

where εt = C
(t+2)2/3

and C = max
(
16R2, 40963α2

)
.

Lemma 7. Let K be an α-strongly convex set with respect
to the `2 norm. For every x∗ ∈ K, Algorithm A1 leads to
the following relations:

RT (A1) =

T∑
t=1

1

2
(ft (y1,t) + ft (y2,t))−

T∑
t=1

ft (x
∗)

≤
T∑
t=1

(
f̂t,δ (xt)− f̂t,δ (x̃∗)

)
+ 3δLT + δLRT/r.

where x̃∗ denotes the projection of x∗ onto Kδ .

Proof. It holds that

RT (A1) =

T∑
t=1

1

2
(ft (y1,t) + ft (y2,t))−

T∑
t=1

ft (x
∗)

=

T∑
t=1

1

2
(ft (y1,t) + ft (y2,t))−

T∑
t=1

ft (xt)

+

T∑
t=1

ft (xt)−
T∑
t=1

ft (x̃
∗)

+

T∑
t=1

ft (x̃
∗)−

T∑
t=1

ft (x
∗) .

Since ft is L-Lipschitz, strong convexity

T∑
t=1

1

2
(ft (y1,t) + ft (y2,t))−

T∑
t=1

ft (xt)

=

T∑
t=1

[
1

2
(ft (xt + δut)− ft (xt))

]

+

T∑
t=1

[
1

2
(ft (xt − δut)− ft (xt))

]

≤
T∑
t=1

L ‖δut‖ ≤ δLT.

Also, we have

T∑
t=1

ft (x̃
∗)−

T∑
t=1

ft (x
∗) ≤

T∑
t=1

L ‖x̃∗ − x∗‖

=

T∑
t=1

L ‖(1− δ/τ)x∗ − x∗‖ ≤ δLRT/r.

We split ft (xt)−ft (x̃∗) into ft (xt)− f̂t,δ (xt)+ f̂t,δ (x̃∗)−
ft (x̃

∗) + f̂t,δ (xt)− f̂t,δ (x̃∗), and thus obtain



T∑
t=1

ft (xt)−
T∑
t=1

ft (x̃
∗) =

T∑
t=1

ft (xt)− f̂t,δ (xt)

+

T∑
t=1

(
f̂t,δ (x̃

∗)− ft (x̃∗)
)
+

T∑
t=1

(
f̂t,δ (xt)− f̂t,δ (x̃∗)

)
≤ 2δLT +

T∑
t=1

(
f̂t,δ (xt)− f̂t,δ (x̃∗)

)
.

This completes the proof.

Now, we are ready to prove the Theorem 1.

Proof of Theorem 1. Let x̃∗ denote the projection of
x∗ onto Kδ. In light of Lemma 7, it suffices to
bound

∑T
t=1

(
E
[
f̂t,δ (xt)

]
− f̂t,δ (x̃∗)

)
. Let x∗t =

argminx∈Kδ Ft(x) for every t ∈ {2, . . . , T + 1}. Since
f̂t,δ(x) is convex, we have

T∑
t=1

(
E
[
f̂t,δ (xt)

]
− f̂t,δ (x̃∗)

)
≤

T∑
t=1

E
[
∇f̂t,δ (xt)> (xt − x̃∗ + x∗t − x∗t )

]
. (4)

Since
∥∥∥∇f̂t,δ (xt)∥∥∥ ≤ L and Ft(x) is 2-strongly convex for

all t ∈ {1, 2, . . . , T}, it follows from Lemma 6 that

T∑
t=1

E
[
∇f̂t,δ (xt)> (xt − x∗t )

]
≤ L

T∑
t=1

E [‖xt − x∗t ‖]

≤L
T∑
t=1

E
[√

Ft (xt)− Ft (x∗t )
]
≤ L
√
C

T∑
t=1

1

(t+ 2)1/3

≤3

2
L
√
C(T + 2)2/3. (5)

Since Ft is 2-strongly convex and Ft (x∗t ) ≤ Ft
(
x∗t+1

)
, we

have∥∥x∗t − x∗t+1

∥∥2 ≤ Ft+1 (x
∗
t )− Ft+1

(
x∗t+1

)
= Ft (x

∗
t )− Ft

(
x∗t+1

)
+ ηg>t

(
x∗t − x∗t+1

)
≤ η ‖gt‖

∥∥x∗t − x∗t+1

∥∥ . (6)

Thus, it holds that
∥∥x∗t − x∗t+1

∥∥ ≤ η ‖gt‖. Let Ft be the
σ-field generated by x1,g1,x2,g2, . . . ,xt−1,gt−1,xt. Note
that x∗t is a function of g1, . . . ,gt−1 and thus measurable
with respect to Ft. Therefore,

E
[
g>t (x∗t − x̃∗)

]
=E

[
E
[
g>t (x∗t − x̃∗)

]
| Ft

]
=E

[
E [gt | Ft]> (x∗t − x̃∗)

]
=E

[
∇f̂t,δ (xt)> (x∗t − x̃∗)

]
.

Then, Lemma 5 yields that

T∑
t=1

E
[
∇f̂t,δ (xt)> (x∗t − x̃∗)

]
=

T∑
t=1

E
[
g>t (x∗t − x̃∗)

]

≤E

[
T∑
t=1

g>t
(
x∗t − x∗t+1

)]
+

1

η
‖x̃∗ − x1‖2

≤η
T∑
t=1

E
[
‖gt‖2

]
+

4R2

η
≤ η(Ld)2T +

4R2

η
. (7)

Combining (4), (5) and (7) concludes that

T∑
t=1

(
E
[
f̂t,δ (xt)

]
− f̂t,δ (x̃∗)

)
≤ η(Ld)2T +

4R2

η
+

3

2
L
√
C(T + 2)2/3.

In light of Lemma 7, the above inequality leads to

E [RT (A1)] ≤3δLT + δLRT/r + η(Ld)2T +
4R2

η

+
3

2
L
√
C(T + 2)2/3.

Substituting δ = T−1 and η = R
Ld(T+2)2/3

produces the
desired bound.

Note that the regret bound O
(
T 2/3

)
in Theorem 1 is

better than the regret bound O
(
T 3/4

)
which is achieved

by an algorithm requiring double loops over general convex
sets [12]. In addition, since the approximate function error
O(δ) together with the norm of the one-point estimator being
O
(
δ−1
)

dominates the regret bound, simply replacing the
one-point estimator in [12] with the two-point estimator will
not help improve the regret bound.

While bounding the expected regret is an important
problem, the regret may still have a high variance. In order to
ensure that Algorithm A1 enjoys a small regret, it is necessary
to prove a bound that holds with high probability. To this
end, we use the Hoeffding-Azuma inequality to derive a high
probability guarantee for the convex functions over strongly
convex set.

Theorem 2. Consider Algorithm A1 with δ = T−1 and
η = R

Ld(T+2)2/3
. For every ξ > 0, the inequality

RT (A1) ≤ LR/r +RLd(T + 2)1/3 + 4RLd(T + 2)2/3

+
3

2
L
√
C(T + 2)2/3 + 2(L+ Ld)R

√
2T log (1/ξ) + 3L

holds with probability at least 1− ξ.

Proof. For each point x̃∗ ∈ Kδ , define

Zt = ∇f̂t,δ (xt)> (x∗t − x̃∗)− g>t (x∗t − x̃∗) .

Since E
[
∇f̂t,δ(x)> (x∗t − x̃∗)

]
= E

[
g>t (x∗t − x̃∗)

]
for

every x that is independent of ut, we have E [Zt] = 0. In
addition, ∥∥∥∇f̂t,δ (xt)> (x∗t − x̃∗)− g>t (x∗t − x̃∗)

∥∥∥
≤
∥∥∥∇f̂t,δ (xt)− gt

∥∥∥ ‖(x∗t − x̃∗)‖

≤
(∥∥∥∇f̂t,δ (xt)∥∥∥+ ‖gt‖) ‖(x∗t − x̃∗)‖

≤ 2(L+ Ld)R.



Thus, the sequence {Zt}Tt=1 is a bounded martingale differ-
ence sequence. Using the Hoeffding-Azuma inequality, we
obtain

P

(
T∑
t=1

Zt > ε

)
≤ exp

(
−ε2

2TB2

)
where B = 2(L + Ld)R. Consider ε = B

√
2T log (1/ξ),

which leads to ξ = exp
(
− ε2

2TB2

)
. Hence, the following

inequality holds with probability at least 1− ξ:

T∑
t=1

∇f̂t,δ (xt)> (x∗t − x̃∗)

≤
T∑
t=1

g>t (x∗t − x̃∗) + 2(L+ Ld)R
√
2T log (1/ξ).

Then, it results from Lemma 5 that

T∑
t=1

g>t (x∗t − x̃∗) ≤
T∑
t=1

g>t
(
x∗t − x∗t+1

)
+

1

η
‖x̃∗ − x1‖2

≤ η
T∑
t=1

‖gt‖2 +
4R2

η
≤ η(Ld)2T +

4R2

η
.

The second inequality holds because of
∥∥x∗t − x∗t+1

∥∥ ≤
η ‖gt‖ (see (6)) and the third inequality holds because
of ‖gt‖ ≤ Ld. Since Ft(x) is 2-strongly convex for all
t = 1, . . . , T , using Lemma 6, we have that

T∑
t=1

E
[
∇f̂t,δ (xt)> (xt − x∗t )

]
≤ L

T∑
t=1

E [‖xt − x∗t ‖]

≤L
T∑
t=1

E
[√

Ft (xt)− Ft (x∗t )
]
≤ L
√
C

T∑
t=1

1

(t+ 2)1/3

≤3

2
L
√
C(T + 2)2/3.

Then, by combining the above results with Lemma 7, we
obtain the desired high probability bound.

B. Bandit feedback and strongly convex loss function

In this subsection, we propose a variant of OFW with a two-
point bandit feedback for strongly convex functions, which
matches the best known regret bound of O(

√
T ) associated

with the full information case for which the gradients are
known completely [34]. Due to the space restriction, the
proofs are moved to the full paper [6].

Definition 3. Given a strictly positive number λ, a function
f is λ-strongly convex over K if for all x,x′ ∈ K, it holds
that

f (x′) ≥ f(x) + (x′ − x)
>∇f(x) + λ

2
‖x′ − x‖2 .

In order to handle strongly convex losses, Ft(x) is redefined
as F̃t(x) =

∑t−1
τ=1

(
〈gt,x〉+ λ

2 ‖x− xτ‖2
)

. The detailed
procedures under this setting are summarized in Algorithm
A2.

Algorithm 2 Strongly Convex Variant of 2-point bandit
algorithm with online Frank-Wolfe (OFW)

1: Inputs: Horizon T , feasible set K, η, δ
2: Outputs: y1,1,y2,1, . . . ,y1,T ,y2,T

3: Initialization: x1 ∈ Kδ
4: for t = 1, 2, . . . ,T do
5: y1,t = xt + δut and y2,t = xt − δut where ut ∼ Sd
6: Play y1,t, y2,t and observe ft(y1,t), ft(y2,t)
7: gt =

d
2δ (ft(y1,t)− ft(y2,t))ut

8: Define F̃t(x) =
∑t−1
τ=1

(
〈gt,x〉+ λ

2 ‖x− xτ‖2
)

9: vt = LPKδ

(
−∇F̃t (xt)

)
10: σt=argmin

σ∈[0,1]

〈
σ (vt − xt),∇F̃t (xt)

〉
+σ2λt

2 ‖vt −xt‖
2

11: xt+1 = xt + σt (vt − xt)
12: end for

Theorem 3. Let {ft(x)}Tt=1 be λ−strongly convex functions,
K be an α-strongly convex set with respect to the `2 norm,
and rBd ⊆ K ⊆ RBd. Define C̃ = max

(
4(Ld+λD)

λ , 288λα2

)
.

Algorithm A2 with δ = T−1 ensures that

E [RT (A2)] ≤2L

√
2C̃T

λ
+

2(Ld+ 2λR)2

λ
log(T )

+ 3L+ LR/r.

Note that the regret bound O(
√
T ) in Theorem 3 is better

than the existing bound O
(
T 2/3

)
achieved by an algorithm

requiring double loops for strongly convex loss functions
over general convex sets [13]. Furthermore, this regret bound
O(
√
T ) matches the regret bound attained with the full

information feedback for strongly convex loss functions over
general convex sets [34].

As before, we use the Hoeffding-Azuma inequality to
derive a high probability guarantee for the case of strongly
convex functions over a strongly convex set.

Theorem 4. Consider Algorithm A2 with δ = T−1. For
every ξ > 0, the inequality

RT (A2) ≤LR/r + 2L

√
2CT

λ
+

2(Ld+ 2λR)2

λ
log(T )

+ 2(L+ Ld)R
√

2T log (1/ξ) + 3L.

holds with probability at least 1− ξ.

Compared with Theorem 2, the high-probability regret
bound is improved to O(

√
T ) by utilizing the strong convexity

of the loss functions.

IV. IMPROVED REGRET BOUNDS FOR SMOOTH LOSS
FUNCTIONS

In this section, we present our algorithm along with its
formal regret guarantee for online convex optimization with
(d+ 1) points bandit feedback under the assumption that the
loss function is smooth. A projection-free algorithm has been
recently proposed in [21] for online convex optimization with
smooth loss functions over general convex sets, which has



led to the improved regret bound O
(
T 2/3

)
by leveraging

the smoothness. That algorithm is not based on the online
Frank-Wolfe method, but rather a version of the Follow-
the-Perturbed-Leader (FPT) method [24]. That algorithm is
based on an online primal-dual methodology, which uses
the smoothness of the loss function to control the error-
propagation caused by the random estimation of the mean
(as the output of the FPT). However, in the bandit setting,
a new challenge arises when the gradient information is
unavailable. In order to leverage the smoothness in FPL, an
accurate estimate of the gradient with a small estimation error
is required. Due to the space restriction, the proofs of the
results of this section are moved to the full paper [6].

Theorem 5. Let {ft(x)}Tt=1 be `-smooth convex func-
tions. For every x∗ ∈ K, Algorithm A3 with σ =
2/L
√
dT−2/3, δ = T−1 and k = dT 1/3e yields that

RT (A3)

=

T∑
t=1

1

1 + d

(
ft (xt) +

d∑
i=1

ft (xt + δei)

)
−

T∑
t=1

ft (x
∗)

≤L+ LR/r +RL
√
dT 2/3 + 4`R2T 2/3 +

dR`

2
T 1/3.

Note that the regret bound O
(
T 2/3

)
in Theorem 5 is better

than the bound O
(
T 3/4

)
which is achieved by an algorithm

requiring double loops for arbitrary convex loss functions
[12]. Furthermore, this regret bound O

(
T 2/3

)
matches the

regret bound attained via a full information feedback in the
smooth losses setting [21].

Algorithm 3 Online smooth projection-free algorithm with
multi-point bandit feedback

1: Inputs: Horizon T , feasible set K, η, δ, k
2: Outputs: {yi,1}di=1, {yi,2}di=1, . . . , {yi,T }di=1

3: Initialization: m = 0, x0 ∈ Kδ
4: for t = 1, 2, . . . ,T do
5: if t mod k 6= 0 then
6: xt = xt−1 and observe ft(xt).
7: yi,t = xt + δei and observe ft(yi,t) for i =

1, . . . , d.
8: gt =

1
δ

∑d
i=1 (ft(yi,t)− ft(xi,t)) ei.

9: else
10: sample vt−k+j ∼ Bd uniformly for j = 1, . . . , k.
11: xjt = LPKδ(−

∑t−1
τ=1 gτ +

1
σv

j
t ) for j = 1, . . . , k.

12: xt =
1
k

∑k
j=1 x

j
t and observe ft(xt).

13: play yi,t = xt + δei and observe ft(yi,t) for i =
1, . . . , d.

14: gt =
1
δ

∑d
i=1 (ft(yi,t)− ft(xi,t)) ei.

15: end if
16: end for

Even though expected regret is a widely accepted metric
for online randomized algorithms, it is essential to understand
whether the expectation bound holds only due to a balance of
large and small chunks of regret or the given result holds most

of the time. To address this question, we use the Hoeffding-
Azuma inequality to derive a high probability guarantee for
the case of convex, smooth functions over a general convex
set.

Theorem 6. Consider Algorithm A3 with σ =
2/L
√
dT−2/3, δ = T−1 and k = dT 1/3e. For every

ξ > 0, the inequality

RT (A3) ≤ L+ LR/r +RL
√
dT 2/3 +

dR`

2
T 1/3

+ 2LR
√

2 log (2/ξ)T 2/3 + 8`R2 log
(
4T 1/3/ξ

)
T 1/3.

holds with probability at least 1− ξ.

V. NUMERICAL EXAMPLES

We conduct numerical experiments to evaluate the perfor-
mance of the proposed algorithms using the task of online
matrix completion. Let {Mt}Tt=1 be symmetric positive semi-
definite matrices, where Mt = N>t Nt such that each entry
of Nt ∈ Rk×n obeys the standard normal distribution. At
each iteration, half of the entries of Mt are observed. We
set n = 20 and k = 18. We denote the set of entries of
Mt observed at the t-th iteration by Ot. It is desirable
to minimize ft (Xt) = 1

2

∑
(i,j)∈Ot

(Xt[i, j]−Mt[i, j])
2

subject to ‖Xt‖∗ ≤ k, where Xt denotes the optimization
variable of the same dimension as Mt, Xt[i, j] denotes
the (i, j) entry of Xt and ‖ · ‖∗ denotes the nuclear norm.
The nuclear norm constraint is a standard convex relaxation
of the rank constraint rank(X) ≤ k. In this example, the
loss function ft is smooth and the constraint set is strongly
convex [11]. Thus, Algorithms A1 and A3 are applicable.
The linear optimization step in Line 9 of Algorithm A1 (or
the linear optimization step in Line 11 of Algorithm A3) has
the closed-form solution kvmaxv

>
max, where vmax denotes

the unit eigenvector of the largest eigenvalue of −∇Ft (Xt)
(or −

∑t−1
τ=1 gτ + 1

σvt−k+j) (see [16]). We compare our
proposed AlgorithmsA1 andA3 with the baseline approaches:
(1) OFW: OFW with the full information feedback over
strongly convex sets [34], (2) OSPF: Online smooth projection
free algorithm with the full information feedback [21], (3)
PFBCO: OFW with the bandit feedback over arbitrary
convex sets [5] (we replace the one-point estimator in the
original algorithm with the two-point estimator to demonstrate
that the improvement in our algorithm is indeed due to
utilizing the structural properties of the problem). For all
of these algorithms, we report the average loss defined as∑T
t=1 ft (Xt) /T . All of the experiments are conducted in

Python3 on a workstation with a 3.1 GHz Intel Core i 5 and
8GB memory, equipped with macOS 10.14.6.

We can observe from Fig. 1 that the average losses of
Algorithms A1 and A3 almost overlap with the average
losses of OFW and OSPF, respectively, when the problem
possesses structural properties, such as strong convexity of
the feasible set or the smoothness of the loss function. This
demonstrates the power of bandit feedback on utilizing the
problem structures in the simple projection-free algorithm
even if the exact gradient information is unavailable. In



addition, Algorithms A1 and A3 have a similar average loss,
which supports the results in Theorem 1 and Theorem 5
stating that Algorithms A1 and A3 enjoy regret bounds of
the same order. Finally, the improvement of our methods over
the previous method with the simple algorithm [5] can be
seen from the comparison of the average losses of Algorithm
A1 and PFBCO.
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Fig. 1. We show the average loss versus the number of iterations for 5
algorithms on the example of online matrix completion. The curve of OFW
and OSPF almost overlap with Algorithms A1 and A3, respectively.

VI. CONCLUSION

In this paper, we developed efficient projection-free al-
gorithms for structured online convex optimization with
multi-point bandit feedback, leading to improved regret
bounds. More specifically, we developed a projection-free
algorithm with two-point bandit feedback achieving the
regret bound O(T 2/3) when loss functions are convex and
constraint sets are strongly convex. This regret bound can
be further improved to O(

√
T ) if the loss functions are

strongly convex. In addition, we developed a projection-free
algorithm with multi-point bandit feedback achieving the
regret bound O(T 2/3) when loss functions are smooth and
constraint sets are convex. These bounds match that for the
full-information setting, demonstrating again the power of
zero-order optimization. These algorithms are thus an effective
alternative to the existing best-known projection-free bandit
algorithms if two-point bandit feedback is available. The
results of this work are applicable to practical problems where
multiple function values can be sampled at each time instance.
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