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Time-variation in online nonconvex optimization
enables escaping from spurious local minima

Yuhao Ding, Javad Lavaei, and Murat Arcak

Abstract—A major limitation of online algorithms
that track the optimizers of time-varying nonconvex
optimization problems is that they focus on a specific
local minimum trajectory, which may lead to poor
spurious local solutions. In this paper, we show that
the natural temporal variation may help simple online
tracking methods find and track time-varying global
minima. To this end, we investigate the properties of
a time-varying projected gradient flow system with
inertia, which can be regarded as the continuous-time
limit of (1) the optimality conditions for a discretized
sequential optimization problem with a proximal reg-
ularization and (2) the online tracking scheme. We
introduce the notion of the dominant trajectory and
show that the inherent temporal variation could re-
shape the landscape of the Lagrange functional and
help a proximal algorithm escape the spurious local
minimum trajectories if the global minimum trajectory
is dominant. For a problem with twice continuously dif-
ferentiable objective function and constraints, sufficient
conditions are derived to guarantee that no matter how
a local search method is initialized, it will track a time-
varying global solution after some time. The results are
illustrated on a benchmark example with many local
minima.

Index Terms—Time-varying optimization, noncon-
vex optimization, stability analysis.

I. Introduction

IN this paper, we study the following equality-
constrained time-varying optimization problem:

min
x(t)∈Rn

f(x(t), t)

s.t. g(x(t), t) = 0
(1)

where t ≥ 0 denotes the time and x(t) is the optimiza-
tion variable that depends on t. Moreover, the objective
function f : Rn × [0,∞)→ R and the constraint function
g(x, t) = (g1(x, t), . . . , gm(x, t)) with gk : Rn × [0,∞)→ R
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A shorter version of this paper has been submitted for the con-
ference publication [1]. The new additions to this version include
the analysis of optimization problems with equality constraints (as
opposed to unconstrained optimization in the conference version),
the derivation of the time-varying projected gradient flow system, the
role of time variation of the constraints, a unified view of the analysis
of equality-constrained problems and unconstrained problems by
introducing the Langrange functional, and the time-varying analysis
for jumping behavior.

for k = 1, ...,m are assumed to be twice continuously
differentiable in state x and continuously differentiable
in time t. For each time t, the function f(x, t) could
potentially be nonconvex in x with many local minima
and the function g(x, t) could also potentially be nonlinear
in x, leading to a nonconvex feasible set. The objective is
to solve the above problem online under the assumption
that at any given time t the function f(x, t′) and g(x, t′)
are known for all t′ ≤ t while no knowledge about f(x, t′)
or g(x, t′) may be available for any t′ > t. Therefore, the
problem (1) cannot be minimized off-line and should be
solved sequentially. Another issue is that the optimization
problem at each time instance could be highly complex
due to NP-hardness, which is an impediment to finding
its global minima. This paper aims to investigate under
what conditions simple local search algorithms can solve
the above online optimization problem to almost global
optimality after some finite time. More precisely, the goal
is to devise an algorithm that can track a global solution
of (1) as a function of time t with some error at the initial
time and a diminishing error after some time.

If f(x, t) and g(x, t) do not change over time, the
problem reduces to a classic (time-invariant) optimization
problem. It is known that simple local search methods,
such as stochastic gradient descent (SGD) [2], may be able
to find a global minimum of such time-invariant problems
(under certain conditions) for almost all initializations
due to the randomness embedded in SGD [3]–[5]. The
objective of this paper is to significantly extend the above
result from a single optimization problem to infinitely-
many problems parametrized by time t. In other words,
it is desirable to investigate the following question: Can
the temporal variation in the landscape of time-
varying nonconvex optimization problems enable
online local search methods to find and track global
trajectories? To answer this question, we study a first-
order time-varying ordinary differential equation (ODE),
which is the counterpart of the classic projected gradient
flow system for time-invariant optimization problems [6]
and serves as a continuous-time limit of the discrete online
tracking method for (1) with the proximal regularization.
This ODE is given as

ẋ(t) = − 1
α
P(x(t), t)∇xf(x(t), t)−Q(x(t), t)g′(x(t), t)

(P-ODE)
where α > 0 is a constant parameter named inertia due to
a proximal regularization, g′(z, t) = ∂g(z,t)

∂t , P(x(t), t)
and Q(x(t), t) are matrices related to the Jacobian of
g(x, t) that will be derived in detail later. A system of
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(a) α = 0.3, b = 5 (b) α = 0.1, b = 5 (c) α = 0.8, b = 5 (d) α = 0.1, b = 10

Fig. 1. Illustration of Example 1 (in order to increase visibility, the objective function values are rescaled). Jumping from a spurious local
minimum trajectory to a global minimum trajectory occurs in Figure 1a and 1d when the inertia α and the change (controlled by the
parameter b) of local minimum trajectory are appropriate.

the form (P-ODE) is called a time-varying projected
gradient system with inertia α. The behavior of the
solutions of this system initialized at different points
depends on the value of α. In the unconstrained case,
this ODE reduces to the time-varying gradient system
with inertia α given as

ẋ(t) = − 1
α
∇xf(x, t) (ODE)

In what follows, we offer a motivating example without
constraints (to simplify the visualization) before stating
the goals of this paper.

A. Motivating example
Example 1. Consider f(x, t) := f̄(x− b sin(t)), where

f̄(y) := 1
4y

4 + 2
3y

3 − 1
2y

2 − 2y

This time-varying objective has a spurious (non-global)
local minimum trajectory at −2 + b sin(t), a local maxi-
mum trajectory at −1 + b sin(t), and a global minimum
trajectory at 1+b sin(t). In Figure 1, we show a bifurcation
phenomenon numerically. The red lines are the solutions
of (P-ODE) with the initial point −2. In the case with
α = 0.3 and b = 5, the solution of (P-ODE) winds up in
the region of attraction of the global minimum trajectory.
However, for the case with α = 0.1 and b = 5, the solution
of (P-ODE) remains in the region of attraction of the
spurious local minimum trajectory. In the case with α = 0.8
and b = 5, the solution of (P-ODE) fails to track any
local minimum trajectory. In the case with α = 0.1 and
b = 10, the solution of (P-ODE) winds up in the region of
attraction of the global minimum trajectory.

Two observations can be made here. First, jumping from
a local minimum trajectory to a better trajectory tends to
occur with the help of a relatively large inertia when the
local minimum trajectory changes the direction abruptly
and there happens to exist a better local minimum trajectory
in the direction of the inertia. Second, when the inertia α is
relatively small, the solution of (P-ODE) tends to track a
local (or global) minimum trajectory closely and converges
to that trajectory quickly.

Example 2. Consider the time-varying optimal power
flow (OPF) problem, as the most fundamental problem for

the operation of electric power grids that aims to match
supply with demand while satisfying network and physical
constraints. Let f(x, t) be the function to be minimized at
time t, which is the sum of the total energy cost and a
penalty term taking care of all the inequality constraints
of the problem. Let g(x, t) = 0 describe the time-varying
demand constraint. Assume that the load data corresponds
to the California data for August 2019. As discussed in
[7], this time-varying OPF has 16 local minima at t=0 and
many more for some values of t > 0. However, if (ODE)
is run from any of these local minima, the 16 trajectories
will all converge to the globally optimal trajectory, as shown
in Figure 2. This observation has been made in [7] for a
discrete-time version of the problem, but it also holds true
for the continuous-time (ODE) model.
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Fig. 2. |x(t)| (magnitude of the solution of (ODE)).

B. Our contributions
To mathematically study the observations made in Ex-

ample 1 and Example 2 for a general time-varying noncon-
vex optimization problem with equality constraints, we fo-
cus on the aforementioned time-varying projected gradient
flow system with inertia α as a continuous-time limit of an
online updating scheme for (1). We first introduce a time-
varying Lagrange functional to unify the analysis of uncon-
strained problems and equality-constrained problems, and
make the key assumption that the time-varying Lagrange
functional is locally one-point strongly convex around each
local minimum trajectory. This assumption is justified by
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the second-order sufficient optimality conditions. A key
property of (P-ODE) is that its solution will remain in the
time-varying feasible region if the initial point is feasible
for (1), which allows us to use the Lyapunov technique
without worrying about the feasibility of the solution.
Then, we show that the time-varying projected gradient
flow system with inertia α is a continuous-time limit of
the Karush–Kuhn–Tucker (KKT) optimality conditions
for a discretized sequential optimization problem with a
proximal regularization. The existence and uniqueness of
the solution for such ODE is proven.

As a main result of this work, it is proven that the nat-
ural temporal variation of the time-varying optimization
problem encourages the exploration of the state space and
re-shaping the landscape of the objective function (in the
unconstrained case) or the Langrange functional (in the
constrained case) by making it one-point strongly convex
over a large region during some time interval. We introduce
the notion of the dominant trajectory and show that if
a given spurious local minimum trajectory is dominated
by the global minimum trajectory, then the temporal
variation of the time-varying optimization would trigger
escaping the spurious local minimum trajectory for free.
We develop two sufficient conditions under which the ODE
solution will jump from a certain local minimum trajectory
to a more desirable local minimum trajectory. We then
derive sufficient conditions on the inertia α to guarantee
that the solution of (P-ODE) can track a global minimum
trajectory. To illustrate how the time variation nature
of an online optimization problem promotes escaping a
spurious minimum trajectory, we offer a case study with
many shallow minimum trajectories.

C. Related work
Online time-varying optimization problems:

Time-varying optimization problems of the form (1) arise
in the real-time optimal power flow problem [8], [9] for
which the power loads and renewable generations are time-
varying and operational decisions should be made every
5 minutes, as well as in the real-time estimation of the
state of a nonlinear dynamic system [10]. Other examples
include model predictive control [11], time-varying com-
pressive sensing [12], [13] and online economic optimiza-
tion [14], [15]. There are many researches on the design
of efficient online algorithms for tracking the optimizers of
time-varying convex optimization problems [16]–[19]. With
respect to time-varying nonconvex optimization problems,
the work [20] presents a comprehensive theory on the
structure and singularity of the KKT trajectories for time-
varying optimization problems. On the algorithm side,
[8] provides regret-type results in the case where the
constraints are lifted to the objective function via penalty
functions. [21] develops a running regularized primal-dual
gradient algorithm to track a KKT trajectory, and offers
asymptotic bounds on the tracking error. [22] obtains an
ODE to approximate the KKT trajectory and derives an
algorithm based on a predictor-corrector method to track
the ODE solution.

Recently, [23] proposed the question of whether the
natural temporal variation in a time-varying nonconvex
optimization problem could help a local tracking method
escape spurious local minimum trajectories. It developed
a differential equation to characterize this phenomenon
(which is the basis of the current work), but it lacked
mathematical conditions to guarantee this desirable be-
havior. The paper [7] also studies this phenomenon in
the context of power systems and verifies on real data for
California that the natural load variation enables escaping
local minima of the optimal power flow problem. The
current work significantly generalizes the results of [23]
and [7] by mathematically studying when such an escaping
is possible.

Local search methods for global optimization:
Nonconvexity is inherent in many real-world problems:
the classical compressive sensing and matrix comple-
tion/sensing [24]–[26], training of deep neural networks
[27], the optimal power flow problem [28], and others.
From the classical complexity theory, this nonconvexity is
perceived to be the main contributor to the intractability
of these problems. However, it has been recently shown
that simple local search methods, such as gradient-based
algorithms, have a superb performance in solving non-
convex optimization problems. For example, [29] shows
that the gradient descent with a random initialization
could avoid the saddle points almost surely, and [3] and
[4] prove that a perturbed gradient descent and SGD
could escape the saddle points efficiently. Furthermore, it
has been shown that nearly-isotropic classes of problems
in matrix completion/sensing [30]–[32], robust principle
component analysis [33], [34], and dictionary recovery [35]
have benign landscape, implying that they are free of
spurious local minima. The work [5] proves that SGD could
help escape sharp local minima of a loss function by taking
the alternative view that SGD works on a convolved (thus
smoothed) version of the loss function. However, these
results are all for time-invariant optimization problems for
which the landscape is time-invariant. In contrast, many
real-world problems should be solved sequentially over
time with time-varying data. Therefore, it is essential to
study the effect of the temporal variation on the landscape
of time-varying nonconvex optimization problems.

Continuous-time interpretation of discrete numer-
ical algorithms: Many iterative numerical optimization
algorithms for time-invariant optimization problems can
be interpreted as a discretization of a continuous-time pro-
cess. Then, several new insights have been obtained due to
the known results for continuous-time dynamical systems
[36], [37]. Perhaps, the simplest and oldest example is the
gradient flow system for the gradient descent algorithm
with an infinitesimally small step size. The recent papers
[38]–[40] study accelerated gradient methods for convex
optimization problems from a continuous-time perspec-
tive. In addition, the continuous-time limit of the gradient
descent is also employed to analyze various non-convex
optimization problems, such as deep linear neural networks
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[41] and matrix regression [42]. It is natural to analyze the
continuous-time limit of an online algorithm for tracking
a KKT trajectory of time-varying optimization problem
[16], [21]–[23].

D. Paper organization
This paper is organized as follows. Section II presents

some preliminaries for time-varying optimization with
equality constraints and the derivation of time-varying
projected gradient flow with inertia. Section III offers an
alternative view on the landscape of time-varying noncon-
vex optimization problems after a change of variables and
explains the role of the time variation of the constraints.
Section IV analyzes the jumping, tracking and escaping
behaviors of local minimum trajectories. Section V illus-
trates the phenomenon that the time variation of an online
optimization problem can assist with escaping spurious
local minimum trajectories, by working on a benchmark
example with many shallow minimum trajectories. Con-
cluding remarks are given in Section VI.

E. Notation
The notation ‖·‖ represents the Euclidean norm. The

interior of the interval Īt,2 is denoted by int(Īt,2). The
symbol Br(h(t)) = {x ∈ Rn : ‖x− h(t)‖ ≤ r} denotes
the region centered around a trajectory h(t) with radius r
at time t. We denote the solution of ẋ = f(x, t) starting
from x0 at the initial time t0 with x(t, t0, x0) or the short-
hand notation x(t) if the initial condition (t0, x0) is clear
from the context.

II. Preliminaries and Problem Formulation
A. Time-varying optimization with equality constraints

The first-order KKT conditions for the time-varying
optimization (1) are as follows:

0 =∇xf(x(t), t) + Jg(x(t), t)>λ(t) (2a)
0 =g(x(t), t) (2b)

where Jg(z, t) := ∂g(z,t)
∂z denotes the Jacobian of g(·, ·)

with respect to the first argument and λ(t) ∈ Rm is a La-
grange multiplier associated with the equality constraint.
We first make some assumptions below.

Assumption 1. f : Rn×[0,∞)→ R is twice continuously
differentiable in x ∈ Rn and continuously differentiable
in t ≥ 0. gk : Rn × [0,∞) → R is twice continuously
differentiable in x ∈ Rn and twice continuously differ-
entiable in t ≥ 0 for k = 1, . . . ,m. Moreover, at any
given time t, f(x, t) is uniformly bounded from below
over the set {x ∈ Rn : g(x, t) = 0}, meaning that
there exists a constant M such that f(x, t) ≥ M for all
x ∈ {x ∈ Rn : g(x, t) = 0} and t ≥ 0.

Assumption 2. The feasible set at t defined as

M(t) := {x ∈ Rn : g(x, t) = 0}

is nonempty for all t ≥ 0.

Assumption 3. For all t ≥ 0 and x ∈ M(t), the matrix
Jg(x, t) has full row-rank.

Remark 1. Although Assumption 3 is somewhat stronger
than the Linear independence constraint qualification [43],
it is necessary for our following analysis because with dif-
ferent values of α and different initial points, the solution
of (P-ODE) may land anywhere in the feasible region.
Furthermore, Sard’s theorem [44] ensures that if the con-
straint function g(·, t) is sufficiently smooth, then the set
of values of g(·, t), denoted as S(t), for which Jg(x, t) is
not full row-rank has measure 0. Thus, Assumption 3 is
satisfied if 0 /∈ S(t) where S(t) is only a set with measure
0. Finally, if the inertia parameter α is fixed and the
initial point of (P-ODE) is a local solution, then the work
[23] provides a sophisticated proof for the existence and
uniqueness of the solution for a special class of (P-ODE)
under a minor assumption that the Jacobian has full-
row rank only at the discrete local trajectories (which is
defined in the paragraph after equation (10) in our work).
However, to be able to study the solution of (P-ODE) for
all α > 0 and any initial feasible point and keep the focus
of the paper on studying the escaping behavior, we made
Assumption 3.

Under Assumption 3, the matrix Jg(x(t), t)Jg(x(t), t)>
is invertible and therefore λ(t) in (2a) can be written as

λ(t) = −(Jg(x(t), t)Jg(x(t), t)>)−1Jg(x(t), t)∇xf(x(t), t)
(3)

Since λ(t) is written as a function of x(t) in (3), we also
denote it as λ(x(t), t). Now, (2a) can be written as

0 =
[
In − Jg(x(t), t)>(Jg(x(t), t)Jg(x(t), t)>)−1

Jg(x(t), t)
]
∇xf(x(t), t) (4)

where In is the identity matrix in Rn×n. For the sake of
readability, we introduce the symbolic notation

P(x(t), t) :=In − Jg(x(t), t)>(Jg(x(t), t)Jg(x(t), t)>)−1

Jg(x(t), t)

which is the orthogonal projection operation onto T tx,
where T tx denotes the tangent plane of g(x(t), t) at the
point x(t) and the time t. It is convenient and conventional
to introduce the time-varying Lagrange functional

L(x, λ, t) = f(x, t) + λg(x, t) (5)

In terms of this functional, (4) can be written as

0 = ∇xL(x, λ, t) (6)

where λ is given in (3). Here, ∇xL(x, λ, t) means first tak-
ing the partial gradient with respect to the first argument
and then using the formula (3) for λ. Since the solution is
time-varying, we define the notion of the local (or global)
minimum trajectory below.

Definition 1. A continuous trajectory h : It → Rn, where
It ⊆ [0,∞), is said to be a local (or global) minimum
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trajectory of the time-varying optimization (1) if each
point of h(t) is a local (or global) minimum of the time
varying optimization (1) for every t ∈ It.

In this paper, we focus on the case when the local
minimum trajectories will not cross, bifurcate or disappear
by assuming the following uniform regularity condition.

Assumption 4. For each local minimum trajectory h(t),
its domain It is [0,∞) and h(t) satisfies the second-
order sufficient optimality conditions uniformly, meaning
that ∇2

xxL(h(t), λ, t) is positive definite on T th(t) = {y :
Jg(h(t), t)>y = 0} for all t ∈ [0,∞).

Lemma 1. Under Assumptions 1-4, each local minimum
trajectory h(t) is differentiable and isolated, and therefore
it can not bifurcate or merge with other local minimum
trajectories.

Proof. Under Assumptions 1-4, one can apply the inverse
function theorem to (2) (see [45, Theorem 4.4, Exam-
ple 4.7]) to conclude that for every h(t̄) and t̄, there exist
an open set Sh(t̄) containing h(t̄) and an open set St̄
containing t̄ such that there exist a unique differentiable
function x(t) in Sh(t̄) for all t ∈ St̄ where x(t) is the
isolated local minimizer of the time-varying optimization
problem (1). Because of this uniqueness property and the
continuity of the local minimum trajectory h(t), x(t) must
coincide with h(t) for all t ∈ St̄. Then, because the above
property holds uniformly for every t ∈ [0,∞), h(t) must
be a differentiable isolated minimum trajectory.

After freezing the time t in (1) at a particular value, one
may use local search methods, like Rosen’s gradient pro-
jection method [46], to minimize f(x, t) over the feasible
regionM(t). If the initial point is feasible and close enough
to a local solution and the step size is small enough, the
algorithm will converge to the local minimum. This leads
to the notion of region of attraction defined by resorting to
the continuous-time model of Rosen’s gradient projection
method [6] (for which the step size is not important
anymore).

Definition 2. The region of attraction of a local
minimum point h(t) of f(·, t) in the feasible set M(t) at
a given time t is defined as:

RAM(t)(h(t)) =
{
x0 ∈M(t)

∣∣ lim
t̃→∞

x̃(t̃) = h(t) where

dx̃(t̃)
dt̃

= −P(x̃(t̃), t)∇xf(x̃(t̃), t) and x̃(0) = x0
}
.

In the unconstrained case, the notion of the locally one-
point strong convexity can be defined as follows:

Definition 3. Consider arbitrary positive scalars c and r.
The function f(x, t) is said to be locally (c, r)-one-point
strongly convex around the local minimum trajectory
h(t) if

∇xf(e+ h(t), t)>e ≥ c ‖e‖2 , ∀e ∈ D, ∀t ∈ [0,∞) (7)

where D = {e ∈ Rn : ‖e‖ ≤ r}. The region D = {e ∈ Rn :
‖e‖ ≤ r} is called the region of locally (c, r)-one-point
strong convexity around h(t).

This definition resembles the (locally) strong convexity
condition for the function f(x, t), but it is only expressed
around the point h(t). This restriction to a single point
constitutes the definition of one-point strong convexity
and it does not imply that the function is convex. The
following result paves the way for the generalization of
the notion of the locally one-point strong convexity from
the unconstrained case to the equality constrained case.

Lemma 2. Consider an arbitrary local minimum tra-
jectory h(t) satisfying Assumption 4, there exist positive
constants r̂ and ĉ such that

e(t)>∇xL(e(t) + h(t), λ(e(t) + h(t), t), t) ≥ ĉ ‖e(t)‖2

for all e(t) ∈ {e+ h(t) ∈M(t) : ‖e‖ ≤ r̂}.

Proof. Due to the second-order sufficient conditions
for the equality constrained minimization problem,
∇2
xxL(h(t), λ(h(t), t), t) is positive definite on T th(t) for

all t ∈ [0,∞), meaning that for every nonzero vector
y ∈ T th(t), there exists a positive constant c̄ such that
y∇2

xxL(h(t), λ, t)y > c̄ ‖y‖2. Since P(h(t), t) is the or-
thogonal projection matrix onto the tangent plane T th(t),
we have y∇2

xxL(h(t), λ(h(t), t), t)P(h(t), t)y > c̄ ‖y‖2 for
all y ∈ T th(t) and y 6= 0, and y∇2

xxL(h(t), λ(h(t), t), t)
P(h(t), t)y = 0 for all y /∈ T th(t). Taking the first-
order Taylor expansion of ∇xL(x, λ(x, t), t) with respect
to x around h(t) and using the following result from [47,
Corollary 1]:

∂

∂x
∇xL(x, λ(x, t), t)

∣∣
x=h(t) =∇2

xxL(h(t), λ(h(t), t), t)

P(h(t), t),

it yields that

e(t)>∇xL(e(t) + h(t), λ, t) = e(t)>∇xL(h(t), λ, t)
+e(t)>∇2

xxL(h(t), λ, t)P(h(t), t)e(t) + o(e(t)3)
=e(t)>∇2

xxL(h(t), λ, t)P(h(t), t)e(t) + o(e(t)3)

From Lemma 6 in Appendix A, we know that
∇2
xxL(x, λ, t)P(x, t) is continuous in x and t. In addition,

g(x, t) is also continuous in x and t. As a result, there exist
positive constants r̂ and ĉ such that

e(t)>∇xL(e(t) + h(t), λ, t) ≥ ĉ ‖e(t)‖2

for all e(t) ∈ {e+ h(t) ∈M(t) : ‖e‖ ≤ r̂}

Definition 4. Consider arbitrary positive scalars c and
r. The Lagrange function L(x, λ, t) with λ given in (3)
is said to be locally (c, r)-one-point strongly convex
with respect to x around the local minimum trajectory
h(t) in the feasible set M(t) if:

e>∇xL(e+ h(t), λ(e+ h(t), t), t) ≥ c ‖e‖2 (8)

for all e ∈ DM(t) and t ∈ [0,∞), where DM(t) = {e +
h(t) ∈ M(t) : ‖e‖ ≤ r}. The region DM(t) = {e + h(t) ∈



6

M(t) : ‖e‖ ≤ r} is called the region of locally (c, r)-one-
point strong convexity of the Lagrange function L(x, λ, t)
around h(t) in the feasible set M(t).

Remark 2. The Lagrange function L(x, λ, t) with λ
given in (3) being locally (c, r)-one-point strongly convex
with respect to x around h(t) is equivalent to the vector
field P(x, t)∇xf(x(t), t) being locally (c, r)-one-point
strongly monotone with respect to x around h(t).

B. Derivation of time-varying projected gradient flow sys-
tem

In practice, one can only hope to sequentially solve the
time-varying optimization problem (1) at some discrete
time instances 0 = τ0 < τ1 < τ2 < τ3 < . . . as follows:

min
x∈Rn

f(x, τi), s.t. g(x, τi) = 0, i = 1, 2, . . . (9)

In many real-world applications, it is neither practi-
cal nor realistic to have solutions that abruptly change
over time. To meet this requirement, we impose a soft
constraint to the objective function by penalizing the
deviation of its solution from the one obtained in the
previous time step. This leads to the following sequence
of optimization problems with proximal regularization
(except for the initial optimization problem):

min
x∈Rn

f(x, τ0), (10a)

s.t. g(x, τ0) = 0,

min
x∈Rn

f(x, τi) + α

2(τi − τi−1)
∥∥x− x∗i−1

∥∥2
, (10b)

s.t. g(x, τi) = 0, i = 1, 2, . . .

where x∗i−1 denotes an arbitrary local minimum of the
modified optimization problem (10) obtained using a local
search method at time iteration i − 1. A local optimal
solution sequence x∗0, x

∗
1, x
∗
2, . . . is said to be a discrete

local trajectory of the sequential regularized optimiza-
tion (10). The parameter α is called inertia because it
acts as a resistance to changes x at time step τi with
respect to x at the previous time step τi−1. Note that α
could be time-varying (and adaptively changing) in the
analysis of this paper, but we restrict our attention to a
fixed regularization term to simplify the presentation.

Under Assumption 3, all solutions x∗ of (10b) must
satisfy the KKT conditions:

0 = ∇xf(x∗i , τi) + α
x∗i − x∗i−1
τi − τi−1

+ Jg(xi, τi)>λ̄i, (11a)

0 = g(xi, τi), (11b)

where λ̄i’s are the Lagrange multipliers for the sequence
of optimization problems with proximal regularization in
(10). Similar to [22], we can write the right-hand side of
the constraint (11b) as:
g(xi, τi)− g(xi, τi−1) + g(xi, τi−1)− g(xi−1, τi−1)

τi − τi−1
(12)

Since the function f(x, t) and g(x, t) are nonconvex in gen-
eral, the problem (10) may not have a unique solution x∗i .

In order to cope with this issue, we study the continuous-
time limit of (11) as the time step τi+1 − τi diminishes
to zero. This yields the following time-varying ordinary
differential equations:

0 = ∇xf(x(t), t) + αẋ(t) + Jg(x(t), t)>λ̄(t), (13a)
0 = Jg(x(t), t)ẋ(t) + g′(x(t), t), (13b)

where g′ = ∂g(x,t)
∂t denotes the partial derivative of g with

respect to t. Since Jg(x(t), t)Jg(x(t), t)> is invertible, we
have

0 =(Jg(x(t), t)Jg(x(t), t)>)−1Jg(x(t), t)∇xf(x(t), t)
− α(Jg(x(t), t)Jg(x(t), t)>)−1g′(x(t), t) + λ̄(t). (14)

Therefore, λ̄(t) can be written as a function of x, t and α:

λ̄(t) =− (Jg(x(t), t)Jg(x(t), t)>)−1Jg(x(t), t)∇xf(x(t), t)
+ α(Jg(x(t), t)Jg(x(t), t)>)−1g′(x(t), t)

=λ(x(t), t) + α(Jg(x, t)Jg(x, t)>)−1g′(x, t) (15)

We alternatively denote λ̄(t) as λ̄(x(t), t, α). When α = 0,
we have λ̄(x(t), t, α) = λ(x(t), t) and the differential equa-
tion (13) reduces to the algebraic equation (2), which is
indeed the first-order KKT condition for the unregularized
time-varying optimization (1). When α > 0, substituting
λ̄(x(t), t, α) into (13a) yields the following time-varying
ODE:

ẋ(t) = − 1
α
P(x(t), t)∇xf(x(t), t)−Q(x(t), t)g′(x(t), t),

(P-ODE)
where Q(x(t), t) = Jg(x(t), t)>(Jg(x(t), t)Jg(x(t), t)>)−1.
In terms of the Lagrange functional, (P-ODE) can be
written as

ẋ = − 1
α
∇xL(x, λ̄, t) = − 1

α
∇xL(x, λ, t)−Q(x, t)g′(x, t).

(16)
Here, ∇xL(x, λ̄, t) means first taking the partial gradient
with respect to the first argument and then using the
formula (15) for λ̄. It can be shown that if the initial point
of (P-ODE) is in the feasible set M(t0), the solution of
(P-ODE) will stay in the feasible set M(t).

Lemma 3. Suppose that the solution x(t, t0, x0) of
(P-ODE) is defined in [t0,∞) with the initial point x0.
If x0 ∈ M(t0), then the solution x(t, t0, x0) belongs to
M(t) for all t ≥ t0.

Proof. On examining the evolution of g(x(t), t) along the
flow of the system (P-ODE), we obtain

ġ(x(t), t) = Jg(x(t), t)ẋ(t) + g′(x(t), t) = 0

Hence, g(x(t0), t0) = g(x(t, t0, x0), t) for all t ≥ t0.

Therefore, as long as the initial point of (P-ODE) is
in the feasible set M(t0), the above lemma guarantees
that we can analyze the stability of (P-ODE) using the
standard Lyapunov’s theorem without worrying about the
feasibility of the solution. When α > 0, we will show
that for any initial point x0, (P-ODE) has a unique
solution defined for all t ∈ It ⊆ [0,∞) if there exists a
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local minimum trajectory h(t) such that the solutions of
(P-ODE) lie in a compact set around h(t) 1.

Theorem 1 (Existence and uniqueness). Under Assump-
tions 1-4 and given any initial point x0 ∈M(t0), suppose
that there exists a local minimum trajectory h(t) with
the property that x(t) − h(t) lies entirely in D for all
t ∈ It ⊆ [0,∞) where D is a compact subset of Rn
containing x0 − h(t0) and x(t) denotes the solution of
(P-ODE) with the initial point x0. Then, (P-ODE) has
a unique solution starting from x0 that is defined for all
t ≥ 0.

Proof. Since h(t) is differentiable by Lemma 1, we can
use the change of variables e(t) = x(t) − h(t) to rewrite
(P-ODE) as:

ė(t) =− 1
α
P(e(t) + h(t), t)∇xf(e(t) + h(t), t)−

Q(e(t) + h(t), t)g′(e(t) + h(t), t)− ḣ(t) (17)

In light of the conditions in Theorem 1, the solution of
(17) stays in a compact set. Then, by Lemma 3 and [36,
Theorem 3.3], the equation (17) has a unique solution.
Thus, (P-ODE) must also have a unique solution.

In online optimization, it is sometimes desirable to
predict the solution at a future time (namely, τi) only
based on the information at the current time (namely,
τi−1). This can be achieved by implementing the forward
Euler method to obtain a numerical approximation to the
solution of (P-ODE):

x̄∗i =x̄∗i−1 − (τi − τi−1)
( 1
α
P(x̄∗i−1, τi−1)∇xf(x̄∗i−1, τi−1)

+Q(x̄∗i−1, τi−1)g′(x̄∗i−1, τi−1)
)

(18)

(note that x̄∗0, x̄∗1, x̄∗2, ... show the approximate solutions).
The following theorem explains the reason behind study-
ing the continuous-time problem (P-ODE) in the remain-
der of this paper.

Theorem 2 (Convergence). Under Assumptions 1-4 and
given a local minimum x∗0 of (10a), as the time difference
∆τ = τi+1 − τi approaches zero, any sequence of discrete
local trajectories (x∆

k ) converges to the (P-ODE) in the
sense that for all fixed T > 0:

lim
∆τ→0

max
0≤k≤ T

∆τ

∥∥x∆
k − x(τk, τ0, x∗0)

∥∥ = 0 (19)

and any sequence of (x̄∆
k ) updated by (18) converges to

the (P-ODE) in the sense that for all fixed T > 0:

lim
∆τ→0

max
0≤k≤ T

∆τ

∥∥x̄∆
k − x(τk, τ0, x∗0)

∥∥ = 0 (20)

Proof. The first part follows from Theorem 2 in [23].
For the second part, a direct application of the classical

1In Theorems 3 and 4, the compactness assumption is included
in the definition of the dominant trajectory. In Theorem 5, checking
the compactness assumption can be carried out via the Lyapunov’s
method without solving the differential equation due to the one-point
strong convexity condition around h(t).

results on convergence of the forward Euler method [48]
immediately shows that the solution of (P-ODE) starting
at a local minimum of (10a) is the continuous limit of
the discrete local trajectory of the sequential regularized
optimization (10).

Theorem 2 guarantees that the solution of (P-ODE)
is a reasonable approximation in the sense that it is the
continuous-time limit of both the solution of the sequential
regularized optimization problem (10) and the solution
of the online updating scheme (18). For this reason, we
only study the continuous-time problem (P-ODE) in the
remainder of this paper.

C. Jumping, tracking and escaping
In this paper, the objective is to study the case where

there are at least two local minimum trajectories of the
online time-varying optimization problem. Consider two
local minimum trajectories h1(t) and h2(t). We provide
the definitions of jumping, tracking and escaping below.

Definition 5. It is said that the solution of (P-ODE)
(v,u)-jumps from h1(t) to h2(t) over the time interval
[t1, t2] if there exist u > 0 and v > 0 such that

Bv(h1(t1)) ∩M(t1) ⊆ RAM(t1)(h1(t1)) (21a)
Bu(h2(t2)) ∩M(t2) ⊆ RAM(t2)(h2(t2)) (21b)
∀x1 ∈ Bv(h1(t1)) ∩M(t1)
=⇒ x(t2, t1, x1) ∈ Bu(h2(t2)) ∩M(t2) (21c)

Definition 6. Given x0 ∈M(t0), it is said that x(t, t0, x0)
u-tracks h2(t) if there exist a finite time T > 0 and a
constant u > 0 such that

x(t, t0, x0) ∈ Bu(h2(t)) ∩M(t), ∀t ≥ T (22a)
Bu(h2(t)) ∩M(t) ⊆ RAM(t)(h2(t)), ∀t ≥ T (22b)

In this paper, the objective is to study the scenario
where a solution x(t, t0, x0) tracking a poor solution h1(t)
at the beginning ends up tracking a better solution h2(t)
after some time. This needs the notion of “escaping” which
is a combination of jumping and tracking.

Definition 7. It is said that the solution of (ODE) (v,u)-
escapes from h1(t) to h2(t) if there exist T > 0, u > 0
and v > 0 such that

Bv(h1(t0)) ∩M(t0) ⊆ RAM(t0)(h1(t0)) (23a)
Bu(h2(t)) ∩M(t) ⊆ RAM(t)(h2(t)), ∀t ≥ T (23b)
∀x0 ∈ Bv(h1(t0)) ∩M(t0) =⇒
x(t, t0, x0) ∈ Bu(h2(t)) ∩M(t), ∀t ≥ T (23c)

Figure 3 illustrates the definitions of jumping and
tracking for Example 1 with α = 0.3 and b = 5. The
objective of this paper is to study when the solution of
(P-ODE) started at a poor local minimum at the initial
time jumps to and tracks a better (or global) minimum of
the problem after some time. In other words, it is desirable
to investigate the escaping property from h1(t) and h2(t).
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Fig. 3. Illustration of jumping and tracking.

III. Change of variables
Given two isolated local minimum trajectories h1(t),

h2(t). One may use the change of variables x(t, t0, x0)
= e(t, t0, e0) + h2(t) to transform (P-ODE) into the form

ė(t) =− 1
α
P(e(t) + h2(t), t)∇xf(e(t) + h2(t), t)−

Q(e(t) + h2(t), t)g′(e(t) + h2(t), t)− ḣ2(t) (24a)

=− 1
α
∇x
(
L
(
e(t) + h2(t), λ̄(e(t) + h2(t), t, α), t

)
+ αḣ2(t)>e(t)

)
(24b)

We use e(t, t0, e0) to denote the solution of this differential
equation starting at time t = t0 with the initial point
e0 = x0 − h2(t0) and use − 1

αU(e(t), t, α) to denote the
right-hand side of (24). Note that h1(t) and h2(t) are local
solutions of (1) and as long as (1) is time-varying, these
functions cannot satisfy (P-ODE) in general. We denote
Mh(t) := {e ∈ Rn : g(e+ h(t), t) = 0}.

A. Unconstrained optimization landscape after a change of
variables

In this subsection, we study the unconstrained case to
enable a better visualization of the optimization land-
scape. In the unconstrained case, (24) is reduced to

ė(t) = − 1
α
∇xf(e(t) + h2(t), t)− ḣ2(t). (25)

1) Inertia encouraging the exploration: The first term
∇xf(e + h2(t), t) in (25) can be understood as a time-
varying gradient term that encourages the solution of (25)
to track h2(t), while the second term ḣ2(t) represents the
inertia from this trajectory. In particular, if ḣ2(t) points
toward outside of the region of attraction of h2(t) during
some time interval, the term ḣ2(t) acts as an exploration
term that encourages the solution of (ODE) to leave the
region of attraction of h2(t). The parameter α balances
the roles of the gradient and the inertia.

In the extreme case where α goes to infinity, e(t) con-
verges to −h2(t) and x(t) approaches a constant trajectory
determined by the initial point x0; when α is sufficiently

small, the time-varying gradient term dominates the in-
ertia term and the solution of (ODE) would track h2(t)
closely. With an appropriate proximal regularization α
that keeps the balance between the time-varying gradient
term and the inertia term, the solution of (ODE) could
temporarily track a local minimum trajectory with the
potential of exploring other local minimum trajectories.

2) Inertia creating a one-point strongly convex land-
scape: The differential equation (25) can be written as

ė(t) = − 1
α
∇e
(
f(e(t) + h2(t), t) + αḣ2(t)>e(t)

)
(26)

This can be regarded as a time-varying gradient flow
system of the original objective function f(e+h2(t), t) plus
a time-varying perturbation αḣ2(t)>e. During some time
interval [t1, t2], the time-varying perturbation αḣ2(t)>e
may enable the time-varying objective function f(e +
h2(t), t) + αḣ2(t)>e over a neighborhood of h1(t) to be-
come one-point strongly convexified with respect to h2(t).
Under such circumstances, the time-varying perturbation
αḣ2(t)>e prompts the solution of (26) starting in a neigh-
borhood of h1(t) to move towards a neighborhood of
h2(t). Before analyzing this phenomenon, we illustrate the
concept in an example.

Consider again Example 1 and recall that f̄(x) has 2
local minima at x = −2 and x = 1. By taking b = 5,
h1(t) = −2 + 5 sin(t) and h2(t) = 1 + 5 sin(t), the differen-
tial equation (26) can be expressed as ė(t) = − 1

α∇e
(
f̄(1+

e(t)) + 5α cos(t)e(t)
)

. The landscape of the new time-
varying function f̄(1+e)+5α cos(t)e with the variable e is
shown for two cases α = 0.3 and α = 0.1 in Figure 4. The
red curves are the solutions of (26) starting from e = −3.
One can observe that when α = 0.3, the new landscape
becomes one-point strongly convex around h2(t) over the
whole region for some time interval, which provides (26)
with the opportunity of escaping from the region around
h1(t) to the region around h2(t). However, when α = 0.1,
there are always two locally one-point strongly convex
regions around h1(t) and h2(t) and, therefore, (26) fails
to escape the region around h1(t).

To further inspect the case α = 0.3, observe in
Figure 5a that the landscape of the objective function
f̄(1 + e) + 1.5 cos(0.85π)e shows that the region around
the spurious local minimum trajectory h1(t) is one-point
strongly convexified with respect to h2(t) at time t =
0.85π. This is consistent with the fact that the solution
of ė = − 1

0.3∇xf̄(1 + e) − 5 cos(t) starting from e = −3
jumps to the neighborhood of 0 around time t = 0.85π,
as demonstrated in Figure 5c. Furthermore, if the time
interval [t1, t2] is large enough to allow transitioning from
a neighborhood of h1(t) to a neighborhood of h2(t), then
the solution of (26) would move to the neighborhood of
h2(t). In contrast, the region around 1 + b sin(t) is never
one-point strongly convexified with respect to −2+b sin(t),
as shown in Figure 5b.

From the right-hand side of (26), it can be inferred
that if the gradient of f(·, t) is relatively small around
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(a) f̄(1 + e) + 1.5 cos(t)e (b) f̄(1 + e) + 0.5 cos(t)e

Fig. 4. Illustration of time-varying landscape after change of variables for Example 1.
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(b) f̄(1 + e) + 1.5 cos(0)e
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(c) solution of ė = − 1
0.3∇xf̄(1 + e)− 5 cos(t)

starting from e0 = −3

Fig. 5. Illustration of one-point strong convexification for Example 1.

TABLE I
A unified view for unconstrained and equality-constrained problems

Unconstrained problem Equality-constrained problem
First-order optimality

condition(FOC) 0 = ∇xf(x, t) 0 = ∇xL(x, λ, t)
ODE (continuous
time limit of FOC

for regularized problem)
ẋ = − 1

α
∇xf(x, t) ẋ = − 1

α
∇xL(x, λ̄, t)

Change of variables:
x = h+ e

ė = − 1
α
∇ef(e+ h, t)− ḣ ė = − 1

α
∇eL(e+ h, λ̄, t)− ḣ

Key assumption:
one-point strong convexity e>∇ef(e+ h, t) ≥ c ‖e‖2 e>∇eL(e+ h, λ, t) ≥ c ‖e‖2

Reshaping of the landscape:
one-point strong convexification e>

(
∇ef(e+ h, t) + αḣ

)
≥ w ‖e‖2 e>

(
∇eL(e+ h, λ̄, t) + αḣ

)
≥ w ‖e‖2

some local minimum trajectory, then its landscape is
easier to be re-shaped by the time-varying linear per-
turbation αḣ2(t)>e. The local minimum trajectory in a
neighborhood with small gradients usually corresponds to
a shallow minimum trajectory in which the trajectory has
a relatively flat landscape and a relatively small region
of attraction. Thus, the one-point strong convexication
introduced by the time-varying perturbation could help
escape the shallow minimum trajectories.

B. Dominant trajectory

In this subsection, we will formalize the intuitions dis-
cussed in Section III-A. We first define the notion of the
shallow local minimum trajectory.

Definition 8. Consider a positive number α and
assume that ḣ1(t) is L-Lipschitz continuous. It is said
that the local minimum trajectory h1(t) is α-shallow
during the time period [t0, t0 + δ] if ε > E(α) + Lδ and
r ≤ 1

2δ(ε − E(α) − Lδ), where ε = supt∈[t0,t0+δ]
∥∥ḣ1(t)

∥∥,
r = supt∈[t0,t0+δ] supx(t)∈RAM(t)(h1(t)) ‖x(t)− h1(t)‖,
E(α) = supt∈[t0,t0+δ] supx(t)∈RAM(t)(h1(t))

∥∥ 1
α∇xL(x, λ̄, t)

∥∥
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and 1
α∇xL(x, λ̄, t) is defined in (16).

In other words, a local minimum trajectory is shallow
if it has a large time variation but a small region of
attraction. We next show that whenever a local minimum
trajectory h1(t) is shallow during some time interval, the
solution of (P-ODE) starting anywhere in the region of
attraction of h1(t) will leave its region of attraction at
some time.

Lemma 4. If the local minimum trajectory h1(t) is
α-shallow during [t0, t0 + δ], then for any x(t0) ∈
RAM(t0)(h1(t0)), then there exists a time t ∈ [t0, t0 + δ]
such that x(t) /∈ RAM(t)(h1(t)).

Proof. Let b(t0) be the unit vector − ḣ1(t0)
‖ḣ1(t0)‖ . One can

write

−ḣ1(t)>b(t0) ≥ −ḣ1(t0)>b(t0)− L|t− t0| ≥ ε− Lδ := ε′

For any t ∈ [t0, t0 + δ] and e(t) ∈ RAM(t)(h1(t)), we have

(ẋ(t)− ḣ1(t))>b(t0) =− 1
α
∇xL(x, λ̄, t)>b(t0)− ḣ1(t)>b(t0)

≥ε′ −
∥∥∥∥ 1
α
∇xL(x, λ̄, t)

∥∥∥∥ ≥ ε′ − E
Hence,

r ≥‖x(t0 + δ)− h1(t0 + δ)‖
≥(x(t0 + δ)− h1(t0 + δ))>b(t0)

≥(x(t0)− h1(t0))>b(t0) +
∫ t0+δ

t0

(ε′ − E)dt

≥− r + (ε′ − E)δ

The above contradiction completes the proof.

On the one hand, Lemma 4 shows that any shallow
local minimum trajectory is unstable in the sense that
the time-variation in the minimum trajectory will force
the solution of (P-ODE) to leave its region of attraction.
If the shallow local minimum trajectory happens to be a
non-global local solution, then the solution of (P-ODE),
acting as a tracking algorithm, will help avoid the bad local
solutions for free. On the other hand, Lemma 4 does not
specify where the solution of (P-ODE) will end up after
leaving the region of attraction of a shallow local minimum
trajectory. Simulations (such as those provided in Sections
III-A and V) suggest that, with some appropriate α, the
solution of (P-ODE) may move towards a nearby local
minimum trajectory that has an enlarged region of one-
point strong convexity. This leads to the following defi-
nition of the region of the domination and the dominant
local minimum trajectory.

Definition 9. Given two local minimum trajectories h1(t)
and h2(t), suppose that the time-varying Lagrange func-
tion L(x, λ, t) with λ given in (3) is locally (c2, r2)-one-
point strongly convex with respect to x around h2(t) in
the regionMh2(t)∩Br2(0). A set Dv,ρ,r2 is said to be the
region of domination for h2(t) with respect to h1(t) if
it satisfies the following properties:

• Dv,ρ,r2 is a compact subset such that

e1 ∈ Dv,ρ,r2 ⇒ e(t, t1, e1) ∈ Dv,ρ,r2 ,∀t ∈ [t1, t2] (27)

where e(t, t1, e1) is the solution of (24) staring from
the feasible initial point e1 ∈ Mh2(t1) at the initial
time t1.

• Dv,ρ,r2 ⊇ D′v ∪ Bρ(0) where

D′v ={e1 ∈ Rn : e1 + h2(t1) ∈M(t1) ∩ Bv(h1(t1))
⊆RAM(t1)(h1(t1))},

ρ ≥ sup
t∈[t1,t2]

sup
ē(t):‖ē(t)‖<r2,
0=U(ē(t),t,α)

‖ē(t)‖ . (28)

The condition (27) is a set invariance property, which
requires that the solution of (24) starting from an initial
point in Dv,ρ,r2 stays in Dv,ρ,r2 during the time period
[t1, t2]. For the visualization of Dv,ρ,r2 , Bρ and D′v in
Definition 9, we consider again Example 1. In Fig 6, the
red curve corresponds to the landscape of the function
f̄(1 + e) + 1.5 cos(0.85π)e, e = 0 corresponds to h2(t)
and e = −3 corresponds to h1(t). Bρ is a region around
h2(t) containing all zeros of 0 = U(·, t, α) during a time
period around 0.85π and D′v is a neighborhood around
h1(t). In this example, the region of domination for h2(t)
with respect to h1(t) is Dv,ρ,r2 = [−4, 1] which contains
Bρ and D′v if h1(t) if it also satisfies (27).

-4 -3 -2 -1 0 1
-5

0

5
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Fig. 6. Illustration of Definition 9: the region of domination.

Definition 10. It is said that h2(t) is a (α,w)-dominant
trajectory with respect to h1(t) during the time period
[t1, t2] over the region Dv,ρ,r2 if the time variation of h2(t)
makes the time-varying function U(e(t), t, α) become one-
point strongly monotone over Dv,ρ,r2 , i.e.,

U(e(t), t, α)>
(
e(t)− ē(t)

)
≥ w ‖e(t)− ē(t)‖2 ,

∀e(t) ∈ Dv,ρ,r2 ∩M(t), t ∈ [t1, t2], (29)

where w > 0 is a constant and ē(t) is defined in (28).

Note that h2(t) being a dominant trajectory with re-
spect to h1(t) is equivalent to the statement that the
inertia of h2(t) creates a strongly convex landscape over
Dv,ρ,r2 , as discussed in Section III-A.
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Remark 3. The intuition behind Definition 10 is that if
the time variation in the time-varying optimization could
make the landscape after the change of variables become
one-point strongly convex with respect to the minimum
trajectory h2(t) in a neighborhood including both tra-
jectories h1(t) and h2(t), then minimum trajectory h2(t)
is dominant (with respect to minimum trajectory h1(t)).
This definition only depends on the landscape of the time-
varying objective and is independent of the algorithm.

C. The role of temporal variations of the constraints
From the perspective of the landscape of the Lagrange

functional, (24b) can be regarded as a time-varying gra-
dient flow system of the Lagrange functional L

(
e(t) +

h2(t), λ̄(e(t) + h2(t), t, α), t
)

(the partial gradient is taken
with respect to the first argument of L) plus a linear time-
varying perturbation αḣg2(t)>e(t). Besides the linear time-
varying perturbation αḣg2(t)>e(t) induced by the inertia of
the minimum trajectory similar to the unconstrained case,
the constraints’ temporal variation g′(·, t) plays the role of
shifting the Lagrange multiplier from λ in (3) to λ̄ in (15),
which results in a nonlinear time-varying perturbation of
the landscape of the Lagrange functional.

From the perspective of the perturbed gradient, the
constraints’ temporal variation g′(·, t) perturbs the pro-
jected gradient P(·, t)∇xf(·, t) in an orthogonal direction
Q(·, t)g′(·, t) to drive the trajectory of (24a) towards sat-
isfying the time-varying constraints.

Lemma 5. At any given time t, the vector
P(x, t)∇xf(x, t) is orthogonal to the vector Q(x, t)g′(x, t).

Proof. Recall that P(x, t) is the orthogonal projection ma-
trix on the tangent plane of g(x(t), t) at the point x(t) after
the freezing time t. Thus, we have P(x, t)∇xf(x, t) ∈ T tx.
For the vector Q(x, t)g′(x, t), it can be shown that

P(x, t)Q(x, t)g′(x, t) = 0

This implies that the orthogonal projection of the vec-
tor Q(x, t)g′(x, t) onto the tangent plane T tx is 0. Thus,
Q(x, t)g′(x, t) must be orthogonal to T tx.

Therefore, in the equality-constrained problem, the
time-varying projected gradient flow system after a change
of variables in (24a) can be regarded as a composition
of a time-varying projected term P(e + h2(t), t)∇xf(e +
h2(t), t), a time-varying constraint-driven term Q(e +
h2(t), t)g′(e + h2(t), t) and an inertia term ḣ2(t) due to
the time variation of the local minimum trajectory.

D. A unified view for unconstrained and equality-
constrained problems

By introducing the Lagrange functional in (5) and (16),
we can unify the analysis of how the temporal variation
and the proximal regularization help reshape the opti-
mization landscape and potentially make the landscape
become one-point strongly convex over a larger region,
for both unconstrained and equality constrained problems.
This unified view is illustrated in Table I.

IV. Main results

In this section, we study the jumping, tracking and
escaping properties for the time-varying nonconvex opti-
mization.

A. Jumping
The following theorem shows that the solution of

(P-ODE) could jump to the dominant trajectory as long
as the time-interval of such domination is large enough.

Theorem 3 (Sufficient conditions for jumping from h1(t)
to h2(t)). Suppose that the local minimum trajectory
h2(t) is a (α,w)-dominant trajectory with respect to h1(t)
during [t1, t2] over the region Dv,ρ,r2 . Let e1 ∈ D′v be the
initial point of (24), and consider ē(t) defined in (28).
Assume that U(e, t, α) is non-singular for all t ∈ [t1, t2]
and e ∈ Dv,ρ,r2 and there exists a constant θ ∈ (0, 1) such
that

t2 − t1 ≥ max

 αρ

(r2 − ρ)θw ,
α ln

(
‖e1−ē(t1)‖
r2−ρ

)
(1− θ)w

 . (30)

Then, the solution of (P-ODE) will (v, r2)-jump from h1(t)
to h2(t) over the time interval [t1, t2].

Proof. First, notice that if U(e, t, α) is uniformly non-
singular for all t ∈ [t1, t2] and e ∈ Dv,ρ,r2 , then ē(t) defined
in (28) is continuously differentiable for t ∈ [t1, t2]. Then,
notice that every solution of (24) with an initial point
in Dv,ρ,r2 ∩M(t1) will remain in Dv,ρ,r2 . It follows from
Theorem 1 that (24) has a unique solution defined for all
t ∈ [t1, t2] whenever e1 ∈ Dv,ρ,r2 ∩M(t1).

We take V (e(t), t) = 1
2 ‖e(t)− ē(t)‖

2 as the Lyapunov
function for the system (24). Because of Lemma 3, any
solution of (24) stating in M(t1) will remain in M(t) for
all t ≥ t1. Therefore, the derivative of V (e(t), t) along the
trajectories of (24) in M(t) can be expressed as

V̇ =(e(t)− ē(t))>
(
− 1
α
U(e(t), t, α)

)
−

(e(t)− ē(t))> ˙̄e(t), ∀e(t) ∈ Dv,ρ,r2 ∩Mh2(t)

≤− w

α
‖e(t)− ē(t)‖2 +

∥∥ ˙̄e(t)
∥∥ ‖e(t)− ē(t)‖ ,

∀e(t) ∈ Dv,ρ,r2 ∩Mh2(t)

≤− (1− θ)w
α
‖e(t)− ē(t)‖2 − θw

α
‖e(t)− ē(t)‖2

+ δ ‖e(t)− ē(t)‖ ,∀e(t) ∈ Dv,ρ,r2 ∩Mh2(t)

≤− (1− θ)w
α
‖e(t)− ē(t)‖2 ,∀e(t) ∈

{e(t) ∈ Dv,ρ,r2 ∩Mh2(t) : ‖e(t)− ē(t)‖ ≥ αδ

θw
} (31)

where δ := supt∈[t1,t2]
∥∥ ˙̄e(t)

∥∥. By taking e1 ∈ D′v ∩M(t1),
since Dv,ρ,r2 satisfies the condition (27), the solution of
(24) starting from e1 will stay in Dv,ρ,r2 . Thus, the bound
in (31) is valid. To ensure that the trajectory of (24) enters
the time-varying set Br2−ρ(ē(t)), it is sufficient to have
αδ
θw ≤ r2−ρ or α ≤ (r2−ρ)θw

δ . Since δ = supt∈[t1,t2]
∥∥ ˙̄e(t)

∥∥ ≥
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ρ
t2−t1 . We can further bound α as α ≤ (r2−ρ)θw(t2−t1)

ρ

which is equivalent to t2 − t1 ≥ αρ
(r2−ρ)θw .

Now, it is desirable to show that if the time interval
[t1, t2] is large enough, the solution of (24a) will enter
the time-varying set Br2−ρ(ē(t)) with an exponential con-
vergence rate. Since V̇ (·, ·) is negative in Γ(t) := {e ∈
Dv,ρ,r2 ∩Mh2(t) : ‖e− ē(t)‖ ≥ αδ

θw} and because of (27), a
trajectory starting from Γ(t1) must stay in Dv,ρ,r2 and
move in a direction of decreasing V (e, t). The function
V (e, t) will continue decreasing until the trajectory enters
the set {e ∈ Dv,ρ,r2 ∩ Mh2(t) : ‖e− ē(t)‖ ≤ αδ

θw} or
until time t2. Let us show that the trajectory enters
Br2−ρ(ē(t)) before t2 if t2 − t1 > α

w(1−θ) ln(‖e1−ē(t1)‖
r2−ρ ).

Since V (e(t), t) = 1
2 ‖e(t)− ē(t)‖

2, (31) can be written as

V̇ (e(t), t) ≤ −(1− θ)2w
α
V (e(t), t),

∀e ∈
{
e ∈ Dv,ρ,r2 ∩Mh2(t) : ‖e(t)− ē(t)‖ ≥ αδ

θw
}
}
,

By the comparison lemma [36, Lemma 3.4],

V (e(t), t) ≤ exp{−(1− θ)2w
α

(t− t1)}V (e1, t1)

Hence,

‖e(t)− ē(t)‖ ≤ exp{−(1− θ)w
α

(t− t1)} ‖e1 − ē(t1)‖ .

The inequality ‖e(t2)− ē(t2)‖ ≤ r2 − ρ holds if t2 − t1 ≥
α

w(1−θ) ln(‖e1−ē(t1)‖
r2−ρ ).

We also offer an approach based on the time-averaged
dynamics over a small time interval and name it “small
interval averaging”2. This technique guarantees that the
solution of the time-varying differential equation (or sys-
tem) will converge to a residual set of the origin of (25),
provided that: (i) there is a time interval [t1, t2] such
that the temporal variation makes the averaged objective
function during this interval locally one-point strongly
convex around h2(t) not only just over a neighborhood of
h2(t) but also over a neighborhood of h1(t), (ii) the original
time-varying system is not too distant from the time-
invariant averaged system, (iii) [t1, t2] is large enough to
allow the transition of points from a neighborhood of h1(t)
to a neighborhood of h2(t). Therefore, the time interval
[t1, t2] and the time-averaged dynamics over this time
interval serve as a certificate for jumping from h1(t) to
h2(t). In what follows, we introduce the notion of averaging
a time-varying function over a time interval [t1, t2].

Definition 11. A function Uav(e, α) is said to be the
average function of U(e, t, α) over the time interval
[t1, t2] if

Uav(e, α) = 1
t2 − t1

∫ t2

t1

U(e, t, α)dτ

2Our averaging approach distinguishes from classic averaging
methods [36], [37], [49], [50] and the partial averaging method [51] in
the sense that: (1) it is averaged over a small time interval instead of
the entire time horizon, and (2) there is no two-time-scale behavior
because there is no parameter in (25) that can be taken sufficiently
small.

The averaged system of (24) over the time interval
[t1, t2] can be written as

ė = − 1
α
Uav(e, α) (32)

Then, (24) can be regarded as a time-invariant system (32)
with the time-varying perturbation term p(e(t), t, α) =
− 1
α (U(e(t), t, α)− Uav(e(t), α)). For the averaged system,

we can define the on-average region of domination Dv,ρ,r2

for h2(t) with respect to h1(t) similarly as Definition 9 by
replacing (28) with

ρ ≥ sup
ē:‖ē‖<r2,0=Uav(ē,α)

‖ē‖ . (33)

The corresponding on-average (α,w)-dominant trajectory
with respect to h1(t) during [t1, t2] over the region Dv,ρ,r2

can also be defined similarly as Definition 10 by replacing
(29) with

Uav(e, α)>(e− ē) ≥ w ‖e− ē‖2 , (34)
∀e ∈ Dv,ρ,r2 ∪

(
∪[t1,t2]M(t)

)
where ē is defined in (33).

Theorem 4 (Sufficient conditions for jumping from h1(t)
to h2(t) using averaging). Suppose that the local minimum
trajectory h2(t) is a on-average (α,w)-dominant trajectory
with respect to h1(t) during [t1, t2] over the region Dv,ρ,r2 .
Assume that the following conditions are satisfied:

1) There exist some time-varying scalar functions
δ1(α, t) and δ2(α, t) such that

‖p(e(t), t, α)‖ ≤ δ1(α, t) ‖e− ē‖+ δ2(α, t), (35)

for all t ∈ [t1, t2], and there exist some positive
constants η1(α) and η2(α) such that∫ t

t1

δ1(α, τ)dτ ≤ η1(α)(t− t1) + η2(α). (36)

2) The inequality

β2(α) ‖e1 − ē‖ e−β1(α)(t2−t1) + β2(α) (37)∫ t2

t1

e−β1(α)(t2−τ)δ2(α, τ)dτ ≤ r2 − ρ, ∀e1 ∈ D′v

holds, where β1(α) = w
α − η1(α) > 0 and β2(α) =

eη2(α) ≥ 1.
Then, the solution of (P-ODE) will (v, r2)-jump from h1(t)
to h2(t) over the time interval [t1, t2].

Proof. As shown in the proof of Theorem 3, the differ-
ential equation (24) has a unique solution defined for all
t ∈ [t1, t2] that stays in Mh2(t) whenever e1 ∈ Dv,ρ,r2 ∩
Mh2(t1). By using V (e) = 1

2 ‖e− ē‖
2 : Dv,ρ,r2 → R as the

Lyapunov function for the system (24), the derivative of
V (e) along the trajectories of (24) can be obtained as

V̇ (e) = (e− ē)>
(
− 1
α
Uav(e, α) + p(e, α, t)

)
≤ −w

α
‖e− ē‖2 + δ1(α, t) ‖e− ē‖2 + δ2(α, t) ‖e− ē‖
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Since V (e) = 1
2 ‖e− ē‖

2, one can derive an upper bound
on V̇ as

V̇ (e) ≤ −
[2w
α
− 2δ1(α, t)

]
V (e) + δ2(α, t)

√
2V (e)

To obtain a linear differential inequality, we consider
W (t) =

√
V (e(t)). When V (e(t)) 6= 0, it holds that

Ẇ = V̇ /2
√
V and

Ẇ ≤ −
[w
α
− δ1(α, t)

]
W + δ2(α, t)√

2
(38)

When V (e(t)) = 0, we have e(t) = ē. Writing the Tylor
expansion of e(t+ ε) for a sufficiently small ε yields that

e(t+ ε) =e(t) + ε
(
− 1
α
Uav(e, α) + p(e, α, t)

)
+ o(ε)

=ē+ εp(ē, α, t) + o(ε)

This implies that

V (e(t+ ε)) = ε2

2 ‖p(ē, α, t)‖
2 + o(ε2).

Therefore,

D+W (t) = lim sup
ε→0+

W (t+ ε)−W (t)
ε

= lim sup
ε→0+

√
ε2

2 ‖p(ē, α, t)‖
2 + o(ε2)

ε

= 1√
2
‖p(ē, α, t)‖

≤ 1√
2
δ2(α, t)

(39)

Thus, (38) is also satisfied when V = 0, and accordingly
D+W (t) satisfies (38) for all values of V . Since W is scalar
and the right-hand side of (38) is continuous in t and
locally Lipschitz in W for all t ∈ [t1, t2] and W ≥ 0, the
comparison lemma is applicable. In addition, the right-
hand side of (38) is linear and a closed-form expression for
the solution of the first-order linear differential equation
of W can be obtained. Hence, W (t) satisfies

W (t) ≤ φ(t, t1)W (t1) + 1√
2

∫ t

t1

φ(t, τ)δ2(α, τ)dτ (40)

where the translation function φ(t, t1) is given by

φ(t, t1) = exp
[
− w

α
(t− t1) +

∫ t

t1

δ1(α, τ)dτ
]
. (41)

‖e(t)− ē‖ ≤ φ(t, t1) ‖e1 − ē‖+
∫ t

t1

φ(t, τ)δ2(α, τ)dτ (42)

Since
∫ t
t1
δ1(α, τ)dτ ≤ η1(α)(t − t1) + η2(α), and using

β1(α) = w
α − η1(α) > 0 and β2(α) = eη2(α) ≥ 1 in (42), it

holds that

‖e(t)− ē‖ ≤β2(α) ‖e1 − ē‖ e−β1(α)(t−t1)

+ β2(α)
∫ t

t1

e−β1(α)(t−τ)δ2(α, τ)dτ (43)

By taking e1 ∈ D′v ⊆ Dv,ρ,r2 , since Dv,ρ,r2 retains trajec-
tories starting from a feasible initial point with respect to

the dynamics (24) for t ∈ [t1, t2], any trajectory of (24)
starting from D′v will stay in Dv,ρ,r2 and remain in the
feasible setMh2(t). Thus, the bound in (43) is valid. If t2
satisfies

β2(α) ‖e1 − ē‖ e−β1(α)(t2−t1)

+ β2(α)
∫ t2

t1

e−β1(α)(t2−τ)δ2(α, τ)dτ ≤ r2 − ρ

then ‖e(t2)− ē‖ ≤ r2 − ρ. Since ē ∈ Bρ(0), we have
‖e(t2)‖ ≤ r2. This shows that the solution of (25) jumps
from h1(t) to h2(t) during the time interval [t1, t2].

Remark 4. If the global minimum trajectory is the
dominant trajectory with respect to the spurious local
minimum trajectories, then Theorems 3 and 4 guarantee
that the solution of (P-ODE) will jump to the neighbor-
hood of the global minimum trajectory.

Remark 5. The condition in Theorem 3 and Condition 2
in Theorem 4 mean that [t1, t2] needs to be large enough
to allow the transition of points from a neighborhood of
h1(t) to a neighborhood of h2(t). Condition 1 in Theorem
4 means that the original time-varying system should not
be too distant from the time-invariant averaged system.

Remark 6. To make the one-point strong monotonicity
conditions (29) and (34) hold, the inertia parameter α
cannot be too small.

Remark 7. The locally one-point strongly convex param-
eter w in (29) and (34) determines the convergence rate
during [t1, t2], which is reflected in (30) and (37).

Remark 8. In Theorem 4, to ensure that the time-
invariant partial interval averaged system is a reasonable
approximation of the time-varying system, the time inter-
val [t1, t2] should not be very large. On the other hand,
to guarantee that the solution of (24) has enough time to
jump, the time interval [t1, t2] should not be very small.
This trade-off is reflected in (37).

B. Tracking
In this subsection, we study the tracking property of

the local minimum trajectory h2(t). First, notice that if
h2(t) is not constant, the right-hand side of (P-ODE) is
nonzero while the left-hand side is zero. Therefore, h2(t) is
not a solution of (P-ODE) in general. This is because the
solution of (P-ODE) approximates the continuous limit
of a discrete local trajectory of the sequential regular-
ized optimization problem (10). However, to preserve the
optimality of the solution with regards to the original
time-varying optimization problem without any proximal
regularization, it is required to guarantee that the solution
of (P-ODE) is close to h2(t).

If the solution of (24) can be shown to be in a small
residual set around 0 on the time-varying manifold M(t),
then it is guaranteed that x(t, t0, x0) tracks its nearby local
minimum trajectory. Notice that (24) can be regarded as
a time-varying perturbation of the system

ė = − 1
α
P(e+ h2(t), t)∇xf(e+ h2(t), t), ∀t ≥ t0 (44)



14

Since h2(t) is a local minimum trajectory, it is obvious that
e(t) ≡ 0 is an equilibrium point of (44). In addition, if the
time-varying Lagrange function L(x, λ, t) with λ given in
(3) is locally one-point strongly convex with respect to x
around h2(t) in the time-varying feasible set M(t), after
noticing the fact that the solution of (24) will remain in
Mh2(t) if the initial point e0 ∈ Mh2(t0) from Lemma
3, one would expect that the solution of (24) stays in a
small residual set of e = 0 if the perturbation Q(e(t) +
h2(t), t)g′(e(t) + h2(t), t) + ḣ2(t) is relatively small. The
perturbationQ(e(t)+h2(t), t)g′(e(t)+h2(t), t)+ḣ2(t) being
small is equivalent to α being small. The next theorem
shows that every local minimum trajectory can be tracked
for a relatively small α.

Theorem 5 (Sufficient condition for tracking). Assume
that the time-varying Lagrange function L(x, λ, t) with λ
given in (3) is locally (c2, r2)-one-point strongly convex
with respect to x around h2(t). Given γ(t) such that∥∥ḣ2(t)

∥∥ ≤ γ(t), suppose that there exist time-varying
scalar functions δ1(t) and δ2(t) such that the perturbed
gradient due to the time-variation of constraints satisfies
the inequality

‖Q(e(t) + h2(t), t)g′(e(t) + h2(t), t)‖ ≤ δ1(t) ‖e‖+ δ2(t),
(45)

and there exist some positive constants η1 and η2 such
that ∫ t

t1

δ1(τ)dτ ≤ η1(t− t1) + η2. (46)

If supt≥t1(δ2(t) + γ(t)) is bounded and the following
conditions hold

‖x0 − h2(0)‖ ≤ r2

eη2
, (47a)

α ≤ c2r2

eη2 supt≥t1(δ2(t) + γ(t)) + η1r2
, (47b)

then the solution x(t, t0, x0) will r2-track h2(t). More
specifically, we have

‖x(t, t0, x0)− h2(t)‖ ≤ eη2 ‖e1‖ e−( c2α −η1)(t−t1)

+ eη2

∫ t

t1

e−( c2α −η1)(t−τ)(δ2(t) + γ(t))dτ ≤ r2. (48)

Proof. Consider V (e) = 1
2 ‖e‖

2 : Br2(0) → R as the
Lyapunov function for the system (24). Because of Lemma
3, any solution of (24) stating in M(t1) will remain in
M(t) for all t ≥ t1. The derivative of V (e) along the
trajectories of (24) can be obtained as

V̇ = e(t)>
(
− 1
α
P(e(t) + h2(t), t)∇xf(e(t) + h2(t), t)

−Q(e(t) + h2(t), t)g′(t)(e(t) + h2(t), t)− ḣg2(t)
)
,

≤ − c
α
‖e(t)‖2 + δ1(t) ‖e(t)‖2 + (δ2(t) + γ(t)) ‖e(t)‖

Since V (e) = 1
2 ‖e‖

2, one can derive an upper bound on V̇
as

V̇ ≤ −
[2c
α
− 2δ1(t)

]
V + (δ2(t) + γ(t))

√
2V

Using the same proof procedure as in Theorem 4 and
by taking β1(α) = c

α − η1 > 0 and β2 = eη2 ≥ 1, it can be
shown that

‖e(t)‖ ≤ β2 ‖e1‖ e−β1(α)(t−t1)

+ β2

∫ t

t1

e−β1(α)(t−τ)(δ2(t) + γ(t))dτ
(49)

To make the bound in (49) valid, we must ensure that
e(t) ∈ Br2(0) for all t ≥ t1. Note that

‖e(t)‖ ≤β2 ‖e1‖ e−β1(α)(t−t1) + β2

β1(α) (1− e−β1(α)(t−τ))

sup
t≥t0

(δ2(t) + γ(t))

≤max
{
β2 ‖e1‖ ,

β2

β1(α) sup
t≥t0

(δ2(t) + γ(t))
}

It can be verified that the condition e(t) ∈ Br2(0) will
be satisfied if (47) holds. Furthermore, by e(t) ∈ Br2(0)
and Theorem 1, there must exist a unique solution for
(P-ODE) for all t ≥ t1.

Remark 9. The inequality (48) implies that the smaller
the regularization parameter α is, the smaller the track-
ing error x(t, t0, x0) − h2(t) is and the faster x(t, t0, x0)
converges to the neighbourhood of h2(t).

Remark 10. In the case that the local minimum trajec-
tory h2(t) is a constant, the upper bound on α simply
becomes α < ∞. This implies that if h2(t) is constant,
then it will be perfectly tracked with any regularization
parameter and can not be escaped by tuning the regular-
ization parameter.

Remark 11. In the unconstrained case or the case with
the time-invariant constraints, δ1(t) and δ2(t) in (45)
simply become zero. Then, the tracking conditions in (47)
become ‖x0 − h2(0)‖ ≤ r2 and α ≤ c2r2

supt≥t0 γ(t) , and the
tracking error bound in (48) becomes

‖e(t)‖ ≤‖e1‖ e−
c2
α (t−t1) +

∫ t

t1

e−
c2
α (t−τ)γ(t)dτ

≤
α supt≥t1 γ(t)

c2

Remark 12. After the solution of (P-ODE) has escaped
the spurious local trajectories and started tracking the
globally minimum trajectory, one may use the state-of-
the-art tracking methods in [21] and [15] to improve the
tracking of the globally minimum trajectory.

C. Escaping
Combining the results of jumping and tracking im-

mediately yields a sufficient condition on escaping from
one local minimum trajectory to a more desirable local
(or global) minimum trajectory. The proof is omitted for
brevity.

Theorem 6 (Sufficient conditions for escaping from h1(t)
to h2(t)). Given two local minimum trajectories h1(t)
and h2(t), suppose that the Lagrange function L(x, λ, t)
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with λ given in (3) is locally (c2, r2)-one-point strongly
convex with respect to x around h2(t) in the time-varying
feasible set {e ∈ Rn : e + h2(t) ∈ M(t), ‖e‖ ≤ r2} and
let Bv(h1(t1)) ⊆ RAM(t1)(h1(t1)). Under the conditions
of Theorem 3 or 4, if (45)-(47) hold, then the solution
of (P-ODE) will (v, r2)-escape from h1(t) to h2(t) after
t ≥ t2.

D. Discussions
Adaptive inertia: To leverage the potential of the

time-varying perturbation αQ(e(t) + h2(t), t)g′(e(t) +
h2(t), t) + αḣ2(t) in re-shaping the landscape of the Lan-
grange function or the objective function to become locally
one-point strongly convex in x over a large region, the
regularization parameter α should be selected relatively
large. On the other hand, to ensure that the solution of
(24) and (26) will end up tracking a desirable local (or
global) minimum trajectory, Theorem 5 prescribes small
values for α. In practice, especially when the time-varying
objective function has many spurious shallow minimum
trajectories, this suggests using a relatively large regular-
ization parameter α at the beginning of the time horizon
to escape spurious shallow minimum trajectories and then
switching to a relative small regularization parameter α
for reducing the ultimate tracking error bound.

Sequential jumping: When the time-varying optimiza-
tion problem has many local minimum trajectories, the so-
lution of (P-ODE) or (ODE) may sequentially jump from
one local minimum trajectory to a better local minimum
trajectory. To illustrate this concept, consider the local
minimum trajectories h1(t), h2(t), ..., hm(t), where hm(t)
is a global trajectory. Assume that there exists a sequence
of time intervals [ti1, ti2] for i = 1, 2, . . . ,m − 1 such that
the conditions of Theorem 3 or 4 are satisfied for hi(t) and
hi+1(t) during each time interval. Then, by sequentially
deploying Theorem 3 or 4, it can be concluded that the
solution of (P-ODE) or (ODE) will jump from h1(t) to
hm(t) after t ≥ tm2 . Furthermore, if hm(t) can be tracked
with the given α, the solution of (P-ODE) or (ODE) will
escape from h1(t) to hm(t) after t ≥ tm2 .

V. Numerical Examples
Example 3. Consider the non-convex function

f̄(x) =0.5e+ 20e−d − 20e−
√

0.5(x2
1+x2

2)+d2

− 0.5e(0.5(cos(2πx1)+cos(2πx2))).

This function has a global minimum at (0, 0) with the opti-
mal value 0 and many spurious local minima. Its landscape
is shown in Figure 7. When d = 0, this function is called
the Ackley function [52], which is a benchmark function
for global optimization algorithms. To make this function
twice continuously differentiable, we choose d = 0.01.

Consider the time-varying objective function f(x, t) =
f̄(x − z(t)) and the time-varying constraint g(x, t) =
(x1 − z1(t)) − 1/2(x2 − z2(t))2 = 0, where z(t) =

Fig. 7. Illustration of Example 3.

[24 sin(t), cos(t)]>. This constrained time-varying opti-
mization problem has the global minimum trajectory
[0, 0]> + z(t) and many spurious local minimum tra-
jectories. Two local minimum trajectories are h1(t) =
[1.92, 1.96]> + z(t) and h2(t) = [0, 0]> + z(t). It can be
shown that L(x, λ, t) is locally (20, 0.5)-one-point strongly
convex with respect to h2(t).

We take Dv,ρ,r2 = D0.04,0.01,1 = [−0.1, 2] × [−0.1, 2]
in Definition 10. The condition in (27) can be verified
by checking the signs of the derivatives of e1(t) and
e2(t) along the dynamics (24) on the boundary points
of D0.04,0.01,1 ∩Mh2(t). Furthermore, (34) is satisfied for
w = 1. Thus, h2(t) is a (0.2, 1)-dominant trajectory with
respect to h1(t) during [0, π8 ] over the region D0.04,0.01,1.

Regarding Theorem 3, if we select θ = 0.2, the inequality
(37) is satisfied for α = 0.2 and t2 − t1 = π/8. Thus,
the solution of (P-ODE) will (0.04, 0.5)-jump from h1(t)
to h2(t). Regarding Theorem 5, δ1 and δ2 in the inequal-
ity (45) can be taken as 0 and 24

√
2 cos(t) +

√
2 sin(t),

respectively. Then the inequality (47b) reduces to α ≤
10√

2(242+1)
≈ 0.29, which is satisfied by α = 0.2. Thus,

the solution of (P-ODE) will 0.5-track h2(t). Putting the
above findings together, we can conclude that the solution
of (24) will (0.04, 0.5)-escape from h1(t) to h2(t).

In addition, by choosing the inertia parameter α = 0.2,
the simulation shows that for 1000 runs of random initial-
ization with x2(0)−z(0) ∈ [−5, 5] and x1(0) determined by
the equality constraint, all solutions of the corresponding
(P-ODE) will sequentially jump over the local minimum
trajectories and end up tracking the global trajectory after
t ≥ 5π.

VI. Conclusion
In this work, we study the landscape of time-varying

nonconvex optimization problems. The objective is to
understand when simple local search algorithms can find
(and track) time-varying global solutions of the problem
over time. We introduce a time-varying projected gradient
flow system with controllable inertia as a continuous-time
limit of the optimality conditions for discretized sequential
optimization problems with proximal regularization and
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online updating scheme. Via a change of variables, the
time-varying projected gradient flow system is regarded as
a composition of a time-varying projected gradient term,
a time-varying constraint-driven term and an inertia term
due to the time variation of the local minimum trajectory.
We show that the time-varying perturbation term due to
the inertia encourages the exploration of the state space
and re-shapes the landscape by potentially making it one-
point strongly convex over a large region during some
time interval. We introduce the notions of jumping and
escaping, and use them to develop sufficient conditions
under which the time-varying solution escapes from a poor
local trajectory to a better (or global) minimum trajectory
over a finite time interval. We illustrate in a benchmark
example with many shallow minimum trajectories that the
natural time variation of the problem enables escaping
spurious local minima over time. Avenues for future work
include the characterization of the class of problems in
which all spurious local minimum trajectories are shallow
compared with the global minimum trajectory.

Appendix A
Lemma 6. Under Assumptions 1-3, if f(x, t),
g1(x, t), . . . , gm(x, t) are twice continuously differentiable
in x on D× [a, b] for some domain D ∈ Rn, then the func-
tion 1

αP(x, t)∇xf(x, t) +Q(x, t)g′(x, t) is locally Lipschitz
continuous in x on {(x, t) ∈ D × [a, b] : x ∈M(t)}.

Proof. We first show that the matrix Jg(x, t)Jg(x, t)>
is positive definite over the time-varying feasible re-
gion M(t) for all t ∈ [a, b]. Since, under Assump-
tion 3, Jg(x, t) is full row rank for x ∈ M(t) for
all t ∈ [a, b], the null space of Jg(x, t) is 0. Thus,
Jg(x, t)x = 0 if and only if x = 0. Therefore,
xJg(x, t)Jg(x, t)>x> = (xJg(x, t))(xJg(x, t))> > 0 for
all x 6= 0. Therefore, Jg(x, t)Jg(x, t)> is positive definite.
Denote σmin(Jg(x, t)Jg(x, t)>) as the minimum eigenvalue
of Jg(x, t)Jg(x, t)>. Then,there exists a positive constant
c such that σmin(Jg(x, t)Jg(x, t)>) ≥ c. By the chain rule
and the twice continuously differentiability of gk(x, t)’s
in x ∈ D for t ∈ [a, b], we know that G(x, t) :=
Jg(x, t)Jg(x, t)> is continuously differentiabile in x ∈ D
for t ∈ [a, b]. Next, we show that G−1 is also continuously
differentiabile in x on {(x, t) ∈ D × [a, b] : x ∈M(t)}. Let
xi be the i-th component of the vector x. By taking the
derivative of the identity I = G(x, t)G(x, t)−1 with respect
to xi, we obatin

∂

∂xi
G(x, t)−1 = −G(x, t)−1

( ∂

∂xi
G(x, t)

)
G(x, t)−1

and ∥∥∥∥ ∂

∂xi
G(x, t)−1

∥∥∥∥ ≤ ∥∥G(x, t)−1∥∥2
∥∥∥∥ ∂

∂xi
G(x, t)

∥∥∥∥
≤ 1
c2

∥∥∥∥ ∂

∂xi
G(x, t)

∥∥∥∥ <∞
Since the inversion operator is continuous by the Cay-
ley–Hamilton theorem, G(x, t) is continuously differen-
tiable in x and

∥∥∥ ∂
∂xi

G(x, t)−1
∥∥∥ is bounded, we know that

∂
∂xi

G(x, t)−1 is well-defined and continuous over D for all
i = 1, . . . , n. Therefore, G(x, t)−1 is continuously differ-
entiable in x on {(x, t) ∈ D × [a, b] : x ∈ M(t)}. Conse-
quently, P(x, t) and Q(x, t) are continuously differentiable
in x on {(x, t) ∈ D × [a, b] : x ∈ M(t)}. Since f(x, t)
is twice continuously differentiable in x and gk(x, t)’s are
twice continuously differentiable in x ∈ D for t ∈ [a, b], it
holds that the function 1

αP(x, t)∇xf(x, t) +Q(x, t)g′(x, t)
is continuously differentiable in x. Hence, because of [36,
Theorem 3.2], it is locally Lipschitz continuous in x on
{(x, t) ∈ D × [a, b] : x ∈M(t)}.
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