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Abstract

We study risk-sensitive reinforcement learning (RL) based on an entropic risk
measure in episodic non-stationary Markov decision processes (MDPs). Both
the reward functions and the state transition kernels are unknown and allowed to
vary arbitrarily over time with a budget on their cumulative variations. When this
variation budget is known a prior, we propose two restart-based algorithms, namely
Restart-RSMB and Restart-RSQ, and establish their dynamic regrets. Based on
these results, we further present a meta-algorithm that does not require any prior
knowledge of the variation budget and can adaptively detect the non-stationarity on
the exponential value functions. A dynamic regret lower bound is then established
for non-stationary risk-sensitive RL to certify the near-optimality of the proposed
algorithms. Our results also show that the risk control and the handling of the
non-stationarity can be separately designed in the algorithm if the variation budget
is known a prior, while the non-stationary detection mechanism in the adaptive
algorithm depends on the risk parameter. This work offers the first non-asymptotic
theoretical analyses for the non-stationary risk-sensitive RL in the literature.

1 Introduction
Risk-sensitive RL considers problems in which the objective takes into account risks that arise during
the learning process, in contrast to the typical expected accumulated reward objective. Effective
management of the variability of the return in RL is essential in various applications in finance [32],
autonomous driving [24] and human behavior modeling [34].

While classical risk-sensitive RL assumes that an agent interacts with a time-invariant (stationary)
environment, both the reward functions and the transition kernels can be time-varying for many
risk-sensitive applications. For example, in finance [32], the federal reserve adjusts the interest rate
or the balance sheet in a non-stationary way and the market participants should adjust their trading
policies accordingly. In the medical treatments [30], the patient’s health condition and the sensitivity
of the patient’s internal body organs to the medicine vary over time. This non-stationarity should be
accounted for to minimize the risk of any potential side effects of the treatment.

Despite the importance and ubiquity of non-stationary risk-sensitive RL problems, the literature lacks
provably efficient algorithms and theoretical results. In this work, we study risk-sensitive RL with an
entropic risk measure [26] under episodic Markov decision processes with unknown and time-varying
reward functions and state transition kernels.

The challenge of non-stationary RL with an entropic risk measure lies mainly in the non-linearity of
the value function (see Equation (1)). Due to the non-stationarity of the model, any estimation error of
the expectation operator may be tremendously amplified in the value function when the risk parameter
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β is small. Furthermore, the non-linearity of the objective function makes it difficult to obtain an
unbiased estimation of the value function, which is needed in the design of a non-stationary detection
mechanism in risk-neutral non-stationary RL [40]. To address these difficulties, we first transform the
standard Bellman equations to the exponential Bellman equation (see Equation (3)) which associates
the instantaneous reward and value function of the next step in a multiplicative way [18], rather than
in an additive way as in the risk-neutral non-stationary RL. However, this multiplicative feature of the
exponential Bellman equation will also involve the policy evaluation errors due to the non-stationary
drifting as multiplicative terms, which makes it difficult to gauge the bounds. To this end, we develop
a novel analysis to carefully quantify the effect of the non-stationarity in risk-sensitive RL. Our main
theoretical contributions, summarized in Table 1, are as follows

• When the variation budget is known a prior, we propose two provably efficient restart algorithms,
namely Restart-RSMB and Restart-RSQ, and establish their dynamic regrets.

• When the variation budget is unknown (parameter-free), we propose a meta-algorithm that adap-
tively detects the non-stationarity of the exponential value functions. The proposed adaptive
algorithms, namely Adaptive-RSMB and Adaptive-RSQ, can achieve the (almost) same dynamic
regret as the algorithms requiring the knowledge of the variation budget.

• We establish a lower bound result for non-stationary RL with entropic risk measure that certifies
the near-optimality of our upper bounds.

• Our results also show that the risk control and the handling of the non-stationarity can be separately
designed if the variation budget is known a prior, while the non-stationary detection mechanism in
the adaptive algorithms depends on the risk parameter.

Algorithm D-Regret Parameter-free Model-free Separation

Restart-RSMB Õ (e∣β∣H ∣S∣ 23 ∣A∣ 13H2M
2
3B

1
3 ) ✗ ✗ ✓

Restart-RSQ Õ (e∣β∣H ∣S∣ 13 ∣A∣ 13H 9
4M

2
3B

1
3 ) ✗ ✓ ✓

Adaptive-RSMB Õ (e∣β∣H ∣S∣ 23 ∣A∣ 13H2M
2
3B

1
3 ) ✓ ✗ ✗

Adaptive-RSQ Õ (e∣β∣H ∣S∣ 13 ∣A∣ 13H 5
3M

2
3B

1
3 ) ✓ ✓ ✗

Lower bound Ω( e
2∣β∣H

3 −1
∣β∣ ∣S∣ 13 ∣A∣ 13M 2

3B
1
3 )

Table 1: We summarize the dynamic regrets and lower bound obtained in this paper. Here, β is the
risk parameter, H is the horizon of each episode, M is the total number of episodes, B is the total
variation measurement, and ∣S∣ and ∣A∣ are the cardinalities of the state and action spaces.

1.1 Related work

Non-stationary RL. Non-stationary RL has been mostly studied in the risk-neutral setting. When the
variation budget is known a prior, a common strategy for adapting to the non-stationarity is to follow
the forgetting principle, such as the restart strategy [31, 43, 41, 16], exponential decayed weights
[39], or sliding window [10, 42]. In this work, we focus on the restart method mainly due to its
advantage of the simplicity of the the memory efficiency [41] and generalize it to the risk-sensitive
RL setting. However, the prior knowledge of the variation budget is often unavailable in practice.
The work [10] develop a Bandit-over-Reinforcement-Learning framework to relax this assumption,
but it leads to the suboptimal regret. To achieve a nearly-optimal regret, some adaptive algorithms
with a non-stationary detection are developed in [3, 9] for bandit problems and in [40] for general RL
problems. However, the above works only consider risk-neutral RL and may not apply to the more
general risk-sensitive RL problems.

Risk-sensitive RL. Many risk-sensitive objectives have been investigated in the literature and
applied to RL, such as the entropic risk measure, Markowitz mean-variance model, Value-at-Risk
(VaR), and Conditional Value at Risk (CVaR) [33, 11, 13, 28, 14, 38, 37, 26]. Our work is closely
related to the entropic risk measure. Following the seminal paper [26], this line of work includes
[4, 5, 7, 6, 8, 12, 15, 21, 23, 25, 35, 22, 36, 19, 20, 18]. In particular, when transitions are unknown
and simulators of the environment are unavailable, the first non-asymptotic regret guarantees are
established under the tabular setting in [19] and the function approximation setting in [20]. Then,
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a simple transformation of the risk-sensitive Bellman equations is proposed in [18], which leads
to improved regret upper bounds. However, the above papers all assume that the environment is
stationary, and therefore their results may quickly collapse in a non-stationary environment.

2 Problem formulation
2.1 Episodic MDP and risk-sensitive objective

In this paper, we study risk-sensitive RL in non-stationary environments via episodic MDPs with
adversarial bandit-information reward feedback and unknown adversarial transition dynamics. At
each episode m, an episodic MDP is defined by the finite state space S, the finite action space
A, a collection of transition probability measure {Pm

h }Hh=1 specifying the transition probability
Pm
h (s′ ∣ s, a) from state s to the next state s′ under action a ∈ A, a collection of reward functions
{rmh }Hh=1 where rmh ∶ S × A → [0,1] , and H > 0 as the length of episodes. In this paper, we focus
on a bandit setting where the agent only observes the values of reward functions, i.e., rmh (smh , amh )
at the visited state-action pair (smh , amh ). We also assume that reward functions are deterministic
to streamline the presentation, while our analysis readily generalizes to the setting where reward
functions are random.

For simplicity, we assume the initial state sm1 to be fixed as s1 in different episodes. We use the
convention that the episode terminates when a state sH+1 at step H + 1 is reached, at which the agent
does not take any further action and receives no reward.

A policy πm = {πm
h }h∈[H] of an agent is a sequence of functions πm

h ∶ S → A, where πm
h (s) is the

action that the agent takes in state s at step h at episode m. For each h ∈ [H] and m ∈ [M], we define
the value function V π,m

h ∶ S → R of a policy π as the expected value of the cumulative rewards the
agent receives under a risk measure of exponential utility by executing π starting from an arbitrary
state at step h. Specifically, we have

V π,m
h (s) ∶= 1

β
log{Eπ,Pm [exp(β

H

∑
i=h

rmi (si, ai)) ∣ sh = s]} (1)

where the expectation Eπ,Pm is taken over the random state-action sequence {(xmi , ami )}
H
i=h, the

action ami follows the policy πm
i (⋅ ∣ xmi ), and the next state xi+1 follows the transition dynam-

ics Pm
i (⋅ ∣ xmi , ami ). Here β ≠ 0 is the risk parameter of the exponential utility: β > 0 corre-

sponds to a risk-seeking value function, β < 0 corresponds to a risk-averse value function, and as
β → 0 the agent tends to be risk-neutral and we recover the classical value function V π,m

h (s) =
Eπ,Pm [∑H

t=1 r
m
h (st, at) ∣ s0 = s] in standard RL.

We further define the action-value function Qπ,m
h ∶ S ×A → R, for each h ∈ [H] and m ∈ [M], which

gives the expected value of the risk measured by the exponential utility when the agent starts from an
arbitrary state-action pair and follows the policy π afterwards; that is,

Qπ,m
h ∶= 1

β
log{exp (β ⋅ rmh (s, a))E [exp(β

H

∑
i=h

rmi (st, at)) ∣ sh = s, ah = a]}

=rmh (s, a) +
1

β
log{E [exp(β

H

∑
i=h+1

rmi (st, at)) ∣ sh = s, ah = a]}

for all (s, a) ∈ S ×A. Under some mild regularity conditions [4], for each episode m, there always
exists an optimal policy, denoted as π∗,m, that yields the optimal value V π∗,m,m

h (s) ∶= supπ V π,m
h (s)

for all (h, s) ∈ [H] × S. For convenience, we denote V π∗,m,m
h (s) as V ∗,mh (s) when it is clear from

the context.

2.2 Exponential Bellman equation

For all (s, a, h,m) ∈ S ×A × [H] × [M], the Bellman equation associated with π is given by

Qπ,m
h (s, a) = rmh (s, a) +

1

β
log {Es′∼Pm

h
(⋅∣s,a) [eβ⋅V

π,m
h+1

(s′)]} , (2a)

V π,m
h (s) = Qπ,m

h (s, π(s)), V π,m
H+1 (s) = 0. (2b)
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In Equation (2), it can be seen that the action value Qπ,m
h of step h is a non-linear function of the

value function V π,m
h+1 of the later step. Based on Equation (2), for h ∈ [H] and m ∈ [M], the Bellman

optimality equation is given by

Q∗,mh (s, a) = rmh (s, a) +
1

β
log {Es′∼Pm

h
(⋅∣s,a) [eβ⋅V

∗,m
h+1

(s′)]} ,

V ∗,mh (s) =max
a∈A

Q∗,mh (s, a), V ∗,mH+1(s) = 0.

It has been recently shown in [18] that under the risk-sensitive measurement, it is easier to analyze a
simple transformation of the Bellman equation (by taking exponential on both sides of (2)), which is
called exponential Bellman equation: for every policy π and tuple (s, a, h,m), we have

eβ⋅Q
π,m
h
(s,a) = Es′∼Pm

h
(⋅∣s,a) [eβ(r

m
h (s,a)+V

π,m
h+1

(s′))] . (3)

When π = π∗,m, we obtain the corresponding optimality equation

eβ⋅Q
∗,m
h
(s,a) = Es′∼Pm

h
(⋅∣s,a) [eβ(r

m
h (s,a)+V

∗,m
h+1

(s′))] . (4)

Note that Equation (3) associates the current and future cumulative utilities (Qπ,m
h and V π,m

h+1 ) in a
multiplicative way, rather than in an additive way as in the standard Bellman equations (2).

2.3 Non-stationarity and variation budget

In this work, we focus on a non-stationary environment where the transition function Pm
h and reward

functions rmh can vary over the episodes. We measure the non-stationarity of the MDP over an interval
I in terms of its variation in the reward functions and transition kernels:

Br,I ∶= ∑
m∈I

H

∑
h=1

sup
s,a
∣rmh (s, a) − rm+1h (s, a)∣ , BP,I ∶= ∑

m∈I

H

∑
h=1

sup
s,a
∥Pm

h (⋅ ∣ s, a) − Pm+1
h (⋅ ∣ s, a)∥

1
.

Note that our definition of variation only imposes restrictions on the summation of non-stationarity
across different episodes, and does not put any restriction on the difference between two steps in the
same episode. We further let Br ∶= Br,[1,M], Bp ∶= Bp,[1,M], and B ∶= Br +Bp, and assume B > 0.

2.4 Performance metrics

Since both the reward and the transition dynamics vary over the episodes and are revealed only after
a policy is decided, the agent aims to ensure the long-term optimality guarantee over some given
period of episodes M . Suppose that the agent executes policy πm in episode m. We now define the
dynamic regret as the difference between the total reward value of policy {π⋆,m}Mm=1 and that of the
agent’s policy πm over M episodes:

D-Regret(M) ∶=
M

∑
m=1
(V ∗,m1 − V πm,m

1 ) .

3 Restart algorithms with the knowledge of variation budget
3.1 Periodically restarted risk-sensitive model-based method

We first present the Periodically Restarted Risk-sensitive Model-based method (Restart-RSMB)
in Algorithm 1. It consists of two main stages: estimation of value function (line 7-13) with the
periodical restart (line 5) and the policy execution (line 15).

To estimate the value function under the unknown non-stationarity, we take the optimistic value
evaluation to properly handle the exploration-exploitation trade-off and apply the restart strategy to
adapt to the unknown non-stationarity. In particular, we reset the visitation countersNm

h (s, a, s′) and
Nm

h (x, a) to zero every W episodes (line 5). Then, the reward and transition dynamics are estimated
using only the data from the episode ℓm = (⌈m

W
⌉ − 1)W + 1 to the episode m by

P̂m
h (s′ ∣ s, a) =

Nm
h (s,a,s

′)+ λ
∣S∣

Nm
h
(s,a)+λ , for all (s, a, s′) ∈ S ×A × S, (5a)

r̂mh (s, a) = 1
Nm

h
(s,a)+λ ∑

m−1
τ=ℓm 1{(s, a) = (sτh, aτh)} rτh (sτh, aτh) , for all (s, a) ∈ S ×A, (5b)
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Algorithm 1 Periodically Restarted Risk-sensitive Model-based RL (Restart-RSMB)

1: Inputs: Time horizon M , restart period W ;
2: for m = 1, . . . ,M do
3: Set the initial state xm1 = x1 and ℓm = (⌈m

W
⌉ − 1)W + 1;

4: if m = ℓm then
5: Qm

h (s, a), V m
h (s) ←H − h + 1 if β > 0, Qm

h (s, a), V m
h (s) ← 0 if β < 0,

Nm
h (s, a) ← 0,Nm

h (s, a, s′) ← 0 for all (s, a, s′, h) ∈ S ×A × S × [H] ;
6: end if
7: for h =H, . . . ,1 do
8: for (s, a) ∈ S ×A do
9: wm

h (s, a) = ∑s′ P̂m
h (s′ ∣ s, a) [eβ[r̂

m
h (s,a)+V

m
h+1(s

′)]] where P̂m
h , r̂mh are defined in (5);

10: Gm
h (s, a) ← {

min{eβ(H−h+1),wm
h (s, a) + Γm

h (s, a)} , if β > 0;
max{eβ(H−h+1),wm

h (s, a) − Γm
h (s, a)} , if β < 0; where Γm

h is de-

fined in (6);
11: V m

h (s) ←maxa′∈A
1
β
logGm

h (s, a′);
12: end for
13: end for
14: for h = 1,2, . . . ,H do
15: Take an action amh ← argmaxa′∈A

1
β
log{Gm

h (smh , a′)}, and observe rh(smh , amh ) and smh+1;

16: Nm
h (smh , amh ) ← Nm

h (smh , amh ) + 1; Nm
h (smh , amh , smh+1) ← Nm

h (smh , amh , smh+1, ) + 1;
17: end for
18: end for

which are used to compute the estimated cumulative rewards at step h (line 9). To encourage a
sufficient exploration in the uncertain environment, Algorithm 1 applies the counter-based Upper
Confidence Bound (UCB). Under the entropic risk measure, this bonus term takes the form

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

C1 ((eβ(H−h+1) − 1) + eβ(H−h+1)β)
√
∣S∣ log(6WH ∣S∣∣A∣/p)

Nm
h
(s,a)+1 , if β > 0,

C1 ((1 − eβ(H−h+1)) − β)
√
∣S∣ log(6WH ∣S∣∣A∣/p)

Nm
h
(s,a)+1 , if β < 0,

(6)

for some constant C1 > 1. Bonus terms of the form (6) are called “doubly decaying bonus” since
they shrink deterministically and exponentially across the horizon steps due to the term eβ(H−h+1),
apart from decreasing in the visit count. We refer the reader to [20] for more discussion.

3.2 Periodically restarted risk-sensitive Q-learning

Next, we introduce Periodically Restarted Risk-sensitive Q-learning (Restart-RSQ) in Algorithm 2,
which is model-free and inspired by RSQ2 in [18]. Similar to Algorithm 1, we use the optimistic
value evaluation to handle the exploration-exploitation trade-off and apply the restart strategy to adapt
to the unknown non-stationarity. In particular, we re-initialize the value functions Qm

h (s, a), V m
h (s)

and reset the visitation counter Nm
h (x, a) to zero every W episodes (line 5). The algorithm then

updates the exponential Q values using the Q-learning style update (line 11-12) for the state action
pair that just visited (line 8). The learning rate αt is defined as H+1

H+t , which is motivated by [27] and
ensures that only the last O( 1

H
) fraction of samples in each epoch is given non-negligible weights

when used to estimate the optimistic Q-values under the non-stationarity. Algorithm 2 also applies
the UCB by incorporating a “doubly decaying bonus” term that takes the form

Γm
h,t(smh , amh ) ← C2 ∣eβ(H−h+1) − 1∣

√
∣S∣ log(MH ∣S∣∣A∣/δ)

t
(7)

for some constant C2 > 1.

3.3 Theoretical results and discussions

We now present our main theoretical results for Algorithms 1 and 2.
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Algorithm 2 Periodically Restarted Risk-sensitive Q-learning (Restart-RSQ)

1: Inputs: Time horizon M , restart period W ;
2: for m = 1, . . . ,M do
3: Set the initial state xm1 = x1 and ℓm = (⌈m

W
⌉ − 1)W + 1;

4: if m = ℓm then
5: Qm

h (s, a), V m
h (s) ←H −h+ 1 if β > 0, Qm

h (s, a), V m
h (s) ← 0 if β < 0, Nm

h (s, a) ← 0 for
all (s, a, h) ∈ S ×A × [H] ;

6: end if
7: for h = 1,2, . . . ,H do
8: Take an action amh ← argmaxa′∈A

1
β
log{Gm

h (smh , a′)}, and observe rmh (smh , amh ) and smh+1;

9: Nm
h (smh , amh ) ← Nm

h (smh , amh ) + 1; t← Nm
h (smh , amh );

10: Set αt = H+1
H+t and define Γm

h,t(smh , amh ) as in (7);

11: wm
h (smh , amh ) = (1 − αt) ⋅Gh(smh , amh ) + αt ⋅ [eβ[r

m
h (s

m
h ,am

h )+V
m
h+1(s

′)]] ;

12: Gm
h (smh , amh ) ← {

min{eβ(H−h+1),wm
h (smh , amh ) + αtΓ

m
h,t(smh , amh )} , if β > 0;

max{eβ(H−h+1),wm
h (smh , amh ) − αtΓ

m
h,t(smh , amh )} , if β < 0;

13: V m
h (smh ) ←maxa′∈A

1
β
logGm

h (smh , a′);
14: end for
15: end for

Theorem 3.1 For every δ ∈ (0,1], with probability at least 1 − δ there exists a universal constant
c1 > 0 (used in Algorithm 1) such that the dynamic regret of Algorithm 1 with W =M 2

3B−
2
3 ∣S∣ 23 ∣A∣ 13

is bounded by

D-Regret(M) ≤Õ (e∣β∣H ∣S∣ 23 ∣A∣ 13H2M
2
3B

1
3 ) .

Theorem 3.2 For every δ ∈ (0,1], with probability at least 1−δ there exists a universal constant c2 >
0 (used in Algorithm 2) such that the dynamic regret of Algorithm 2 with W =M 2

3H−
3
4B−

2
3 ∣S∣ 23 ∣A∣ 13

is bounded by

D-Regret(M) ≤Õ (e∣β∣H ∣S∣ 13 ∣A∣ 13H 9
4M

2
3B

1
3 ) .

The proofs of the two theorems are provided in Appendices B and C, respectively. Note that the above
results generalize those in the literature of risk-neutral non-stationary RL. In particular, when β → 0,
we recover the regret bounds with the same dependence on M and B for the restart model-based RL
[17] and restart Q-learning [31].

4 Adaptive algorithm without the knowledge of variation budget
In Theorems 3.1 and 3.2, we need to set the restart period to W = O(B− 2

3M
2
3 ), which clearly

requires the variation budget B in advance. To overcome this limitation, we propose a meta-algorithm
that adaptively detects the non-stationarity without the knowledge of B, while still achieving the
similar dynamic regret as in Theorems 3.1 and 3.2. In particular, we generalize the black-box
approach [40] to the risk-sensitive RL setting and design a non-stationarity detection based on the
exponential Bellman equations (3).

4.1 Risk-sensitive non-stationary detection

We first sketch the high-level idea of the black-box reduction approach for risk-sensitive non-stationary
RL with β > 0. Note that the dynamic regret can be bounded and decomposed as follows:

D-Regret(M) ≤ 1

β

M

∑
m=1
(eβV

∗,m
1 − eβV

m
1 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R1

+ 1
β

M

∑
m=1
(eβV

m
1 − eβV

πm,m
1 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R2

(8)

where V m
1 is an UCB-based optimistic estimator of the value function as constructed in Algorithms

1 and 2. In a stationary environment with β > 0, the base algorithms, such as Algorithms 1 and 2
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Algorithm 3 Risk-sensitive MALG with Stationary Tests and Restarts (Adaptive-ALG)

1: Inputs: ALG and its associated ρ(⋅), n̂ = log2M + 1, ρ̂(m) = 6n̂ log(M
δ
)ρ(m);

2: for n = 0,1, . . . , do
3: Set mn ←m and run MALG-Initialization (Algorithm 4) for the block [mn,mn + 2n − 1];
4: while m <mn + 2n do
5: Identify the unique active instance covering the episode m and denote it as alg;
6: Construct the optimistic estimator gm for the active instance alg;
7: Follow alg’s decision πm, receive estimated value Rm = eβ∑

H
h=1 rmh , and update alg;

8: Set Um = {
minτ∈[mn,m] gτ , if β > 0,
maxτ∈[mn,m] gτ , if β < 0;

9: Perform Test1 and Test2; Increment t← t + 1;
10: If either test returns fail, then restart from Line 2.
11: end while
12: end for
13: Test1: Return fail if m = alg.e for some order-k alg and
⎧⎪⎪⎨⎪⎪⎩

1
2k ∑

alg.e
τ=alg.sRτ −Ut ≥ 9ρ̂(2k), if β > 0,

Ut − 1
2k ∑

alg.e
τ=alg.sRτ ≥ 9ρ̂(2k), if β < 0;

14: Test2: Return fail if {
1

m−mn+1 ∑
m
τ=mn

(gτ −Rτ) ≥ 3ρ̂(m −mn + 1), if β > 0,
1

m−mn+1 ∑
m
τ=mn

(Rτ − gτ) ≥ 3ρ̂(m −mn + 1), if β < 0,

without the restart mechanism (that is, W = M ), ensure that R1 is simply non-positive and R2 is
bounded by Õ(M 1

2 ). However, in a non-stationary environment, both terms can be substantially
larger. Thus, if we can detect the event that either of the two terms is abnormally larger than the
promised bound for a stationary environment, we learn that the environment has changed substantially
and should restart the base algorithm. This detection can be easily performed for R2 since both eβV

m
1

and eβV
πm,m
1 are observable 1, but not for R1 since V ∗,m1 is unknown. To address this issue, we fully

utilize the fact that eβV
m
1 is a UCB-based optimistic estimator to facilitate non-stationary detection.

(a) β > 0. (b) β < 0.

Figure 1: An illustration of the risk-sensitive non-stationarity detection.

We illustrate the idea of non-stationary detection for risk-sensitive RL in Figure 1. Here, the value of
V ∗,m1 drastically increases which results to an increase in eβV

∗,m
1 for β > 0 and an decrease in eβV

∗,m
1

for β < 0. If we start running another instance of base algorithm after this environment change, then
its performance will gradually approach due to its regret guarantee in a stationary environment. Since
the optimistic estimators should always be an upper bound of the learner’s average performance
in a stationary environment for β > 0 or a lower bound of the learner’s average performance in a
stationary environment for β < 0, if, at some point, we find that the new instance of the base algorithm
significantly outperformances/underperformances (depending on the value of β) this quantity, we can
infer that the environment has changed.

1More precisely, ∑M
m=1 e

βV
πm,m
1 can be estimated from ∑M

m=1 e
β∑H

h=1 rmh using the Azuma’s inequality.
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4.2 Multi-scale ALG (MALG) and Non-stationarity Tests

To detect the non-stationarity at different scales, we schedule and run instances of the base algorithm
ALG in a randomized and multi-scale manner. In particular, Adaptive-ALG runs MALG in a sequence
of blocks with doubling lengths. Within each block, Adaptive-ALG first initializes a MALG schedule
(Algorithm 4 in Appendix D.1), and then interacts the unique active instance at each episode with
the environment (lines 5-7 in Algorithm 3). At the end of each episode, Adaptive-ALG performs
two non-stationarity tests (line 10 in Algorithm 3), and if either of them returns fail, the restart is
triggered. We now describe these three parts in detail below.

MALG-initialization. MALG is run for an interval of length 2n (unless it is terminated by the non-
stationarity detection), which is called a block. During the initialization, MALG partions the block
equally into 2n−k sub-intervals of length 2k for k = 0,1, . . . , n, and an instance of based algorithm
(denoted by ALG) is scheduled for each of these sub-intervals with probability ρ(2n)

ρ(2k) , where ρ is a
non-increasing function associated with the bound on R2 for ALG in a stationary environment (see
Appendix D.3). We refer to these instances of length 2k as order-k instances.

MALG-interaction. After the initialization, MALG starts interacting with the environment as
follows. In each episode m, the unique instance alg that covers this episode with the shortest length
is considered as active, while all others are regarded as inactive. MALG follows the decision of the
active instance alg and updates it after receiving the feedback from the environment. All inactive
instances do not make any decisions or updates, that is, they are paused but may be resumed at some
future episode. We refer the read to Appendix D.2 for an illustrative example for MALG procedure.

Non-stationarity detection For β > 0, two non-stationarity tests are performed for the two terms in
the decomposition (8). In particular, Test1 prevents R1 from growing too large by testing if there is
some order−k instance’s interval during which the learner’s average performance 1

2k ∑
alg.e
τ=alg.sRτ is

larger than the promised optimistic estimator Um =minτ∈[mn,m] gτ (for a stationary environment)
by a certain amount. On the other hand, Test2 prevents R2 from growing too large by directly testing
if its average is large than the promised regret bound. The two non-stationarity tests for β < 0 are
similar but with 1

2k ∑
alg.e
τ=alg.sRτ and Um exchanged in TEST1, as well as with gτ and Rτ exchanged

in TEST2.

4.3 Theoretical results and discussions

For simplicity, we denote the revised Algorithms 1 and 2 without the restart mechanism (that is,
W =M ) as RSMB and RSQ, respectively. We now present our main theoretical result for Algorithm
3 when the base algorithms are RSMB and RSQ, respectively.

Theorem 4.1 For every δ ∈ (0,1], with probability at least 1 − δ it holds for Algorithm 3 that

D-Regret(M) ≤
⎧⎪⎪⎨⎪⎪⎩

Õ (e∣β∣H ∣S∣ 23 ∣A∣ 13H2M
2
3B

1
3 ) , if ALG is RSMB,

Õ (e∣β∣H ∣S∣ 23 ∣A∣ 13H 5
3M

2
3B

1
3 ) , if ALG is RSQ.

The above results show that the dynamic regret bound of the adaptive Algorithm 3 (almost) matches
that of the restart Algorithms 1-2 that require the knowledge of the variation budget. The proof of
Theorem 4.1 relies on the results in Theorems 3.1-2 and is provided in Appendix D.4.

5 Lower bound
We now present a lower bound on the dynamic regret.

Theorem 5.1 For sufficiently large M , there exists an instance of non-stationary MDP with H
horizons, state space S , action space A and variation budget B such that

D-Regret(M) ≥Ω
⎛
⎝
e

2∣β∣H
3 − 1
∣β∣ ∣S∣ 13 ∣A∣ 13M 2

3B
1
3
⎞
⎠
.

Theorem 5.1 shows that the exponential dependence on ∣β∣ and H in Theorems 3.1, 3.2 and 4.1
is essentially indispensable and that the results in Theorems 3.1, 3.2 and 4.1 are nearly optimal
in their dependence on ∣A∣,M and B. When β → 0, we recover the existing lower bound for the
non-stationary risk-neutral episodic MDP problems. The proof is given in Appendix D.4.
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6 Risk Control Under the Non-stationarity
Risk control in non-stationary RL is more challenging since the rewards and dynamics are time-
varying and unknown. In this section, we discuss some key ideas behind our methods and proofs.

Normalized dynamics estimation in model-based algorithm. In model-based algorithms for non-
stationary risk-neutral RL, the un-normalized dynamics estimation [17, 16] is sufficient for achieving
a near-optimal regret because the effect of the model estimation error due to the “unnormalization”
on the dynamic regret is little. However, it is critical to use the normalized dynamics estimation (5a)
in Algorithm 1. This is because that a small model estimation error due to the “unnormalization” may
be amplified when β → 0.

Multiplicative feature of the exponential Bellman equation. The multiplicative feature of the
exponential Bellman equation will involve the policy evaluation error as multiplicative terms. These
terms are easy to bound in a stationary environment in light of the optimistic estimator of the
exponential value function. However, due to the non-stationary drifting of the environment, the
estimator V m

h may no longer be an optimistic estimator and a more careful analysis is needed.

Non-stationarity detection on the exponential value functions. Different from non-stationarity
detection for risk-neutral RL [40], we design non-stationarity detection mechanism for the exponential
value functions (3) instead of the value functions (1) in Algorithm 3. This is because the non-linearity
of the risk-sensitive value function makes it difficult to obtain its unbiased estimation, which is needed
in the design of non-stationary detection mechanism.

Separation design of the risk-control and the non-stationarity. When the variation budget is known,
the risk-control and the handling of the non-stationarity can be separately designed in the algorithm,
that is, the restart frequency in Algorithms 1 and 2 does not depend on the risk parameter β and only
depends on the non-stationarity of the environment B. If we know the environment’s variation budget
in advance, then we can schedule the restart frequency ahead no matter the risk-sensitivity. On the
other hand, without such knowledge of the variation budget, the adaptive non-stationary detection
needs to take into account the risk parameter β because the promised regret bound, the optimistic
estimator, and the unbiased sample of the exponential value functions all depend on β.

7 Conclusion and future work
In this paper, we provide strong theoretical analyses for the non-stationary risk-sensitive RL problem,
which is motivated by various risk-sensitive applications. We propose two restart-based algorithms
that require the knowledge of the variation budget, as well as a black-box approach to turn a certain
risk-sensitive RL algorithm in a (near-)stationary environment into another algorithm in a non-
stationary environment without requiring the knowledge of the variation budge. The dynamic regret
bounds of these algorithms are obtained and a lower bound is established to verify the near-optimality
of the proposed upper bounds. Our results also reveal the condition under which the risk control and
the handling of the non-stationarity can be separately designed in the algorithm.

One important future direction lies in extending our results to other notions of risk, such as the
general coherent risk measures [2]. Furthermore, it is useful to study how to adjust the risk sensitivity
parameter adaptively in a non-stationary environment.
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A Notations

For a positive integer n, let [n] ∶= {1,2, . . . , n}. Given a variable x, the notation a = O(b(x))
means that a ≤ C ⋅ b(x) for some constant C > 0 that is independent of x. Similarly, a = Õ(b(x))
indicates that the previous inequality may also depend on the function log(x), where C > 0 is again
independent of x. In addition, the notation a = Ω(b(x)) means that a ≥ C ⋅ b(x) for some constant
C > 0 that is independent of x.

B Proof of Theorem 3.1

B.1 Preliminaries

First, we set some notations and definitions. Define ι ∶= log(6H ∣S∣∣A∣W /p) for a given p ∈ (0,1].
We adopt the shorthand notations 1m

h (s, a) ∶= 1{(smh , amh ) = (s, a)} and rmh ∶= rh (smh , amh ) for
(m,h) ∈ [M] × [H]. The epoch is defined as an interval that starts at the first episode after a restart
and ends at the first time when the restart is triggered. In Algorithm 1, the restart mechanism divides
M episodes into ⌈M

W
⌉ epochs.

For every (m,h) ∈ [M] × [H], and (s, a, s′) ∈ S × A × S, we define two visitation counters
Nm

h (s, a, s′) and Nm
h (x, a) at step h in episode m as follows:

Nm
h (s, a, s′) =

m−1
∑

τ=ℓm
1{(s, a, s′) = (sτh, aτh, sτh+1)} ,

Nm
h (s, a) =

m−1
∑

τ=ℓm
1{(s, a) = (sτh, aτh)} .

(9a)

This allows us to estimate the transition kernel Pm
h and reward function rm for episode m using only

the data from the episode ℓm = (⌈m
W
⌉ − 1)W + 1 to the episode m by

P̂m
h (s′ ∣ s, a) =

Nm
h (s,a,s

′)+ λ
∣S∣

Nm
h
(s,a)+λ , for all (s, a, s′) ∈ S ×A × S (10a)

r̂mh (s, a) = 1
Nm

h
(s,a)+λ ∑

m−1
τ=ℓm 1{(s, a) = (sτh, aτh)} rτh (sτh, aτh) , for all (s, a) ∈ S ×A, (10b)

where λ > 0 is the regularization parameter. We denote by V m
h , Gm

h ,Γ
m
h the values of Vh,Gh,Γh

after the updates in step h of episode m, respectively. We also set Qm
h = 1

β
log {Gm

h } .

Let us fix a pair (s, a) ∈ S ×A. Recall from Algorithm 1 that

wm
h (s, a) = ∑

s′
P̂m
h (s′ ∣ s, a) [eβ[r̂

m
h (s,a)+V

m
h+1(s

′)]] .

We define

qm,+
h,1 (s, a) ∶= {

wm
h (s, a) + Γm

h (s, a), if β > 0
wm

h (s, a) − Γm
h (s, a), if β < 0

qmh,1(s, a) ∶=
⎧⎪⎪⎨⎪⎪⎩

min{qm,+
h,1 (s, a), eβ(H−h+1)} , if β > 0

max{qm,+
h,1 (s, a), eβ(H−h+1)} , if β < 0

and

qmh,2(s, a) ∶= Es′∼Pm
h
(⋅∣s,a) [eβ[r

m
h (s,a)+V

m
h+1(s

′)]] , (11)

as well as the following for a policy π,

qm,π
h,3 (s, a) ∶= Es′∼Pm

h
(⋅∣s,a) [eβ[r

m
h (s,a)+V

π,m
h+1

(s′)]] (12)
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B.2 Model prediction errors

Lemma B.1 Define Vh+1 ∶= {V̄h+1 ∶ S → R ∣ ∀s ∈ S, V̄h+1(s) ∈ [0,H − h]}. For any p ∈ (0,1], with
probability 1 − p/2, we have

∣ ∑
s′∈S
(P̂m

h (s′ ∣ s, a) eβ[r
m
h (s,a)+V̄ (s

′)] − Pm
h (s′ ∣ s, a) eβ[r

m
h (s,a)+V̄ (s

′)])∣

≤Γm
h + ∣eβ(H−h+1) − 1∣BP,E

for every (s, a,m,h) ∈ S ×A × [M] × [H] and V̄ ∈ Vh+1, where Γm
h is defined in (6).

Proof. For the ease of notation, we denote ∑s′∈S Pm
h (s′ ∣ s, a) eβ[r

m
h (s,a)+V̄ (s

′)] as
(Pm

h e
β[rmh +V̄ ]) (s, a). Then, for every V̄ ∈ Vh+1, we consider the difference between

∑s′∈S P̂m
h (s′ ∣ ⋅, ⋅) eβ[r

m
h (s,a)+V̄ (s

′)] and ∑s′∈S Pm
h (s′ ∣ ⋅, ⋅) eβ[r

m
h (s,a)+V̄ (s

′)] as follows:

(Nm
h (s, a) + λ) ∣ ∑

s′∈S
(P̂m

h (s′ ∣ s, a) eβ[r
m
h (s,a)+V̄ (s

′)] − Pm
h (s′ ∣ s, a) eβ[r

m
h (s,a)+V̄ (s

′)])∣ (13)

= ∣∑
s′∈S
(Nm

h (s, a, s′) +
λ

∣S∣) e
β[rmh (s,a)+V̄ (s

′)] − (Nm
h (s, a) + λ) (Pm

h e
β[rmh +V̄ ]) (s, a)∣

≤ ∣∑
s′∈S

Nm
h (s, a, s′) eβ[r

m
h (s,a)+V̄ (s

′)] −Nm
h (s, a) (Pm

h e
β[rmh +V̄ ]) (s, a)∣

+ λ ∣ 1∣S∣ ∑s′∈S
eβ[r

m
h (s,a)+V̄ (s

′)] − Pm
h e

β[rmh +V̄ ](s, a)∣

=
RRRRRRRRRRRRR

m−1
∑

τ=ℓm
Q

1{(s, a) = (sτh, aτh)} (eβ[r
m
h (s

τ
h,a

τ
h)+V̄ (s

τ
h+1)] − (Pm

h e
β[rmh +V̄ ]) (s, a))

RRRRRRRRRRRRR

+ λ ∣ 1∣S∣ ∑s′∈S
eβ[r

m
h (s,a)+V̄ (s

′)] − Pm
h e

β[rmh +V̄ ](s, a)∣

=
RRRRRRRRRRRRR

m−1
∑

τ=ℓm
Q

1{(s, a) = (sτh, aτh)} eβr
m
h (s

τ
h,a

τ
h) (eβV̄ (s

τ
h+1) − (Pm

h e
βV̄ ) (s, a))

RRRRRRRRRRRRR

+ λ ∣ 1∣S∣ ∑s′∈S
eβ[r

m
h (s,a)+V̄ (s

′)] − Pm
h e

β[rmh +V̄ ](s, a)∣

≤
RRRRRRRRRRRRR

m−1
∑

τ=ℓm
Q

1{(s, a) = (sτh, aτh)} eβr
m
h (s

τ
h,a

τ
h) (eβV̄ (s

τ
h+1) − (Pτ

he
βV̄ ) (s, a))

RRRRRRRRRRRRR
(14)

+
RRRRRRRRRRRRR

m−1
∑

τ=ℓm
Q

1{(s, a) = (sτh, aτh)} eβr
m
h (s

τ
h,a

τ
h) ((Pτ

he
βV̄ ) (s, a) − (Pm

h e
βV̄ ) (s, a))

RRRRRRRRRRRRR
(15)

+ λ ∣ 1∣S∣ ∑s′∈S
eβ[r

m
h (s,a)+V̄ (s

′)] − Pm
h e

β[rmh +V̄ ](s, a)∣ (16)

for every (m,h) ∈ [M] × [H] and (s, a) ∈ S ×A.

To analyze the term in (14), we let ητh ∶= eβ[r
m
h (s

τ
h,a

τ
h)+V̄ (s

τ
h+1)] − (Pτ

he
β[rmh +V̄ ]) (sτh, aτh). Condi-

tioning on the filtration Fm
h,1, the term ητh is a zero-mean and ∣eβ(H−h+1) − 1∣-sub-Gaussian random

variable. By Lemma F.2, we use Y = λI and Xτ = 1{(s, a) = (sτh, aτh)} and thus with probability at
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least 1 − δ it holds for every m ∈ [M] that

(Nm
h (s, a) + λ)

−1/2
RRRRRRRRRRRRR

m−1
∑

τ=ℓm
Q

1{(s, a) = (sτh, aτh)} (eβ[r
m
h (s

τ
h,a

τ
h)+V̄ ](s

τ
h+1) − (Pτ

he
β[rmh +V̄ ]) (sτh, aτh))

RRRRRRRRRRRRR

≤

¿
ÁÁÁÁÀ
(eβ(H−h+1) − 1)2

2
log
⎛
⎜
⎝

(Nm
h (s, a) + λ)

1/2
λ−1/2

δ

⎞
⎟
⎠

≤
√
(eβ(H−h+1) − 1)2

2
log (W

δ
)

where W is the restart period.

For the term in (15), by the definition of BP,E and Nm
h , we have

RRRRRRRRRRRRR

m−1
∑

τ=ℓm
Q

1{(s, a) = (sτh, aτh)} ((Pτ
he

β[rmh +V̄ ]) (s, a) − (Pm
h e

β[rmh +V̄ ]) (s, a))
RRRRRRRRRRRRR

=
RRRRRRRRRRRRR

m−1
∑

τ=ℓm
Q

1{(s, a) = (sτh, aτh)} ((Pτ
h (eβ[r

m
h +V̄ ] − 1)) (s, a) − (Pm

h (eβ[r
m
h +V̄ ] − 1)) (s, a))

RRRRRRRRRRRRR

≤
RRRRRRRRRRRRR

m−1
∑

τ=ℓm
Q

1{(s, a) = (sτh, aτh)}
RRRRRRRRRRRRR
∣eβ(H−h+1) − 1∣BP,E

≤(Nm
h (s, a) + λ) ∣eβ(H−h+1) − 1∣BP,E .

where the first equality is due to Pm
h 1 = Pτ

h1 for all τ ∈ [ℓm,m − 1]. For the term in (16), we have

λ ∣ 1∣S∣ ∑s′∈S
eβ[r

m
h (s,a)+V̄ (s

′)] − Pm
h e

β[rmh +V̄ ](s, a)∣ ≤ λ∣S∣ ∑s′∈S
∣eβ[r

m
h (s,a)+V̄ (s

′)] − Pm
h e

β[rmh +V̄ ](s, a)∣

≤λ ∣eβ(H−h+1) − 1∣ .

By returning to (13) and setting λ = 1, with probability at least 1 − δ it holds that

∣ ∑
s′∈S
(P̂m

h (s′ ∣ s, a) eβ[r
m
h (s,a)+V̄ (s

′)] − Pm
h (s′ ∣ s, a) eβ[r

m
h (s,a)+V̄ (s

′)])∣

≤ (Nm
h (s, a) + λ)

− 1
2 ∣eβ(H−h+1) − 1∣

√
1

2
(log (W

δ
)) + ∣eβ(H−h+1) − 1∣BP,E + ∣eβ(H−h+1) − 1∣

≤C1 (Nm
h (s, a) + λ)

− 1
2 ∣eβ(H−h+1) − 1∣

√
(log (W

δ
)) + ∣eβ(H−h+1) − 1∣BP,E

for all m ∈ [M] and for some constant C1 > 1.

Furthermore, let d (V,V ′) =maxs∈S ∣V (s) − V ′(s)∣ be a distance on Vh+1. For every ϵ, an ϵ-covering

Vϵ
h+1 of Vh+1 with respect to distance d(⋅, ⋅) satisfies ∣Vϵ

h+1∣ ≤ ( 1ϵ )
∣S∣
. Then, for every V ∈ Vh+1, there

exists V ′ ∈ Vϵ
h+1 such that maxs∈S ∣V (s) − V ′(s)∣ ≤ ϵ, which further implies that

max
s,a,s′

∣eβ[r
m
h (s,a)+V (s

′)] − eβ[r
m
h (s,a)+V

′(s′)]∣ ≤gh(β)ϵ,

where

gh(β) = {
eβ(H−h+1)β, if β > 0,
−β, if β < 0. (17)
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Thus, by the triangle inequality and (13), we have

∣ ∑
s′∈S
(P̂m

h (s′ ∣ s, a) eβ[r
m
h (s,a)+V (s

′)] − Pm
h (s′ ∣ s, a) eβ[r

m
h (s,a)+V (s

′)])∣

≤ ∣∑
s′∈S
(P̂m

h (s′ ∣ s, a) eβ[r
m
h (s,a)+V

′(s′)] − Pm
h (s′ ∣ s, a) eβ[r

m
h (s,a)+V

′(s′)])∣ + 2gh(β)βϵ

≤C1 (Nm
h (s, a) + λ)

−1/2 ∣eβ(H−h+1) − 1∣
√

log (W
δ
) + ∣eβ(H−h+1) − 1∣BP,E + 2gh(β)ϵ.

Then, by choosing δ = (p/2)/ (∣Vϵ
h+1∣H ∣S∣ ∣A∣), ϵ = 1

4
√
W

, and taking a union bound over V ∈ Vϵ
h+1

and (s, a, h) ∈ S ×A × [H], it holds with probability at least 1 − p/2 that

sup
V ∈Vh+1

{∣∑
s′∈S
(P̂m

h (s′ ∣ s, a) eβ[r
m
h (s,a)+V (s

′)] − Pm
h (s′ ∣ s, a) eβ[r

m
h (s,a)+V (s

′)])∣}

≤C1 (Nm
h (s, a) + λ)

−1/2 ∣eβ(H−h+1) − 1∣

¿
ÁÁÁÀ⎛
⎝
log
⎛
⎝
6W ∣Vϵ

h+1∣H ∣S∣ ∣A∣
p

⎞
⎠
⎞
⎠
+ ∣eβ(H−h+1) − 1∣BP,E

+ 2gh(β)ϵ

≤C1 (Nm
h (s, a) + λ)

−1/2 ∣eβ(H−h+1) − 1∣
¿
ÁÁÀ∣S∣(log(6WH ∣S∣ ∣A∣

p
)) + ∣eβ(H−h+1) − 1∣BP,E

+ gh(β)W −1/2

≤(C1 ∣eβ(H−h+1) − 1∣ + gh(β)) (Nm
h (s, a) + λ)

−1/2

¿
ÁÁÀ∣S∣(log(6WH ∣S∣ ∣A∣

p
)) + ∣eβ(H−h+1) − 1∣BP,E

≤C1 (∣eβ(H−h+1) − 1∣ + gh(β)) (Nm
h (s, a) + λ)

−1/2

¿
ÁÁÀ∣S∣(log(6WH ∣S∣ ∣A∣

p
)) + ∣eβ(H−h+1) − 1∣BP,E

for every (s, a,m,h) ∈ S ×A× [M] × [H]. By our choice of Γm
h , with probability at least 1 − p/2 it

holds that

∣ ∑
s′∈S
(P̂m

h (s′ ∣ s, a) eβ[r
m
h (s,a)+V̄ (s

′)] − Pm
h (s′ ∣ s, a) eβ[r

m
h (s,a)+V̄ (s

′)])∣

≤ Γm
h + ∣eβ(H−h+1) − 1∣BP,E

for every (s, a,m,h) ∈ S ×A × [M] × [H]. ◻

Lemma B.2 For every (s, a,m,h) ∈ S ×A × [M] × [H] and V̄ ∈ Vh+1, we have

∣ ∑
s′∈S
(P̂m

h (s′ ∣ s, a) eβ[r̂
m
h (s,a)+V̄ (s

′)] − P̂m
h (s′ ∣ s, a) eβ[r

m
h (s,a)+V̄ (s

′)])∣ ≤ Γm
h + gh(β)Br,E

where gh(β) is defined in (17).

Proof. Since

∣eβx − eβy ∣ ≤ {βe
βu∣x − y∣, if β > 0,

−β∣x − y∣, if β < 0

for every 0 ≤ x ≤ u and 0 ≤ y ≤ u where u > 0 is some constant, it holds that

∣ ∑
s′∈S
(P̂m

h (s′ ∣ s, a) eβ[r̂
m
h (s,a)+V̄ (s

′)] − P̂m
h (s′ ∣ s, a) eβ[r

m
h (s,a)+V̄ (s

′)])∣

≤gh(β) ∣r̂mh (s, a) − rmh (s, a)∣ . (18)
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Furthermore, by our estimation r̂mh (x, a), we have

∣r̂mh (x, a) − rmh (x, a)∣
= ∣r̂mh (x, a) − rmh (x, a)∣

= (nmh (x, a) + λ)
−1 ∣

m−1
∑

τ=ℓm
1{(x, a) = (xτh, aτh)} (rτh(xτh, aτh) − rmh (x, a)) − λrmh (x, a)∣

≤Br,E + (nmh (x, a) + λ)
−1 ∣λrmh (x, a)∣

≤Br,E + (nmh (x, a) + λ)
−1
λ

≤Br,E + (nmh (x, a) + λ)
−1/2

λ

By substituting the above inequality into (18) and setting λ = 1, we obtain the desired results. ◻

Lemma B.3 For every p ∈ (0,1], with probability 1 − p/2, we have

∣ ∑
s′∈S
(P̂m

h (s′ ∣ s, a) eβ[r̂
m
h (s,a)+V̄ (s

′)] − Pm
h (s′ ∣ s, a) eβ[r

m
h (s,a)+V̄ (s

′)])∣

≤2Γm
h + ∣eβ(H−h+1) − 1∣BP,E + gh(β)Br,E

where gh(β) is defined in (17), for every (s, a,m,h) ∈ S ×A × [M] × [H] and V̄ ∈ Vh+1.

Proof. The proof follows from Lemma B.1, Lemma B.2 and Cauchy-Schwartz inequality. ◻

B.3 Value difference bounds

Lemma B.4 Recall the definition of Γm
h from Algorithm 1. For all (m,h, s, a) ∈ [M] × [H] ×S ×A,

the following statement holds with probability at least 1 − p/2:

• If β > 0:

− ∣eβ(H−h+1) − 1∣BP,E − gh(β)Br,E ≤(qmh,1 − qmh,2) (s, a)
≤4Γm

h + ∣eβ(H−h+1) − 1∣BP,E + gh(β)Br,E .

• If β < 0:

− ∣eβ(H−h+1) − 1∣BP,E − gh(β)Br,E ≤(qmh,2 − qmh,1) (s, a)
≤4Γm

h + ∣eβ(H−h+1) − 1∣BP,E + gh(β)Br,E .

(Note that gh(β) is defined in (17)).

Proof. We focus on the case of β > 0 since the proof for β < 0 is similar. We first fix a tuple
(m,h, s, a) ∈ [M] × [H] × S ×A. By the definitions of qm,+

h,1 and qmh,2, one can compute

∣(qm,+
h,1 − 2Γ

m
h − qmh,2) (s, a)∣

= ∣(wm
h − qmh,2) (s, a)∣

= ∣ ∑
s′∈S
(P̂m

h (s′ ∣ s, a) eβ[r̂
m
h (s,a)+V̄ (s

′)] − Pm
h (s′ ∣ s, a) eβ[r

m
h (s,a)+V̄ (s

′)])∣

≤ 2Γm
h + ∣eβ(H−h+1) − 1∣BP,E + gh(β)Br,E

where the last step holds by Lemma B.1. Then, we have

− ∣eβ(H−h+1) − 1∣BP,E − gh(β)Br,E ≤(qm,+
h,1 − q

m
h,2) (s, a)

≤4Γm
h + ∣eβ(H−h+1) − 1∣BP,E + gh(β)Br,E .

16



Furthermore, if qm,+
h,1 ≤ eβ(H−h+1), one can write

qm,+
h,1 − q

m
h,2 = qmh,1 − qmh,2 ≥ − ∣eβ(H−h+1) − 1∣BP,E − gh(β)Br,E .

If qm,+
h,1 ≥ eβ(H−h+1), we have qm,+

h,1 − qmh,2 = eβ(H−h+1) − qmh,2 ≥ 0. In addition, since qm,+
h,1 ≥ qmh,1, it

holds that qmh,1 − qmh,2 ≤ q
m,+
h,1 − qmh,2. This completes the proof.

◻

Lemma B.5 On the event of Lemma B.4, for all (m,h, s, a) ∈ [M] × [H] × S ×A and every policy
π:

• If β > 0:

eβ⋅Q
m
h (s,a) − eβ⋅Q

π,m
h
(s,a) ≥ −(H − h + 1) [∣eβ(H−h+1) − 1∣BP,E + gh(β)Br,E] .

• If β < 0:

eβ⋅Q
m
h (s,a) − eβ⋅Q

π,m
h
(s,a) ≤ (H − h + 1) [∣eβ(H−h+1) − 1∣BP,E + gh(β)Br,E] .

Proof. We focus on the case of β > 0 since the proof for β < 0 is similar. For the purpose of
the proof, we set Qπ,m

H+1(s, a) = Q
∗,m
H+1(s, a) = 0 for all (s, a) ∈ S × A. We fix a tuple (m,s, a) ∈

[M] × S × A and use strong induction on h. The base case for h = H + 1 is satisfied since
eβ⋅Q

m
H+1(s,a) = eβ⋅Qπ,m

H+1
(s,a) = 1 for all m ∈ [M] by definition. Now, we fix an index h ∈ [H] and

assume that

eβ⋅Q
m
h+1(s,a) − eβ⋅Q

π,m
h+1
(s,a) ≥ −(H − h) [∣eβ(H−h) − 1∣BP,E + gh(β)Br,E] .

Moreover, by the induction assumption, we have

eβ⋅V
m
h+1(s) =max

a′∈A
eβ⋅Q

m
h+1(s,a

′)

≥max
a′∈A

eβ⋅Q
π,m
h+1
(s,a′) − (H − h) [∣eβ(H−h) − 1∣BP,E + gh(β)Br,E]

≥ eβ⋅V
π,m
h+1

(s) − (H − h) [∣eβ(H−h) − 1∣BP,E + gh(β)Br,E] . (19)

By the definitions of qmh,2 and qm,π
h,3 , it follows from (19) that

qmh,2 − qm,π
h,3 ≥ −(H − h) [∣e

β(H−h+1) − 1∣BP,E + gh(β)Br,E] .

In addition, on the event of Lemma B.4, we also have

qmh,1 − qmh,2 ≥ − [∣eβ(H−h+1) − 1∣BP,E + gh(β)Br,E] .
Therefore, it follows that

(eβ⋅Q
m
h − eβ⋅Q

π,m
h ) (s, a) = (qmh,1 − qm,π

h,3 ) (s, a)

= (qmh,1 − qmh,2) (s, a) + (qmh,2 − qm,π
h,3 ) (s, a)

≥ − (H − h + 1) [∣eβ(H−h+1) − 1∣BP,E + gh(β)Br,E]
which completes the induction. ◻

Lemma B.6 For all (m,h, s) ∈ [M] × [H] × S, policy π and δ ∈ (0,1], with probability at least
1 − δ/2:

• If β > 0:

eβ⋅V
m
h (s,a) − eβ⋅V

π,m
h

(s,a) ≥ −(H − h + 1) [∣eβ(H−h+1) − 1∣BP,E + gh(β)Br,E] .

• If β < 0:

eβ⋅V
m
h (s,a) − eβ⋅V

π,m
h

(s,a) ≤ (H − h + 1) [∣eβ(H−h+1) − 1∣BP,E + gh(β)Br,E] .

Proof. The result follows from Lemma B.5 and Equation (19).
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B.4 Proof of Theorem 3.1

We first consider β > 0. For h ∈ [H], we define

δmh ∶= eβV
m
h (s

m
h ) − eβV

πm,m
h

(smh ), (20a)

ζmh+1 ∶= qmh,2 − qmh,3 − eβr
m
h (s

m
h ,am

h )δmh+1 (20b)

= [Pm
h (eβ[r

m
h (s

m
h ,am

h )+V
m
h+1(s

′)] − eβ[r
m
h (s

m
h ,am

h )+V
πm,m
h+1

(s′)])] (smh , amh ) − eβr
m
h (s

m
h ,am

h )δmh+1,

where [Pm
h f] (s, a) ∶= Es′∼Pm

h
(∣⋅∣s,a) [f (s′)] for every f ∶ S → R and (s, a) ∈ S ×A. Then, for every

(m,h) ∈ [M] × [H], we have

δmh
(i)= (eβ⋅Q

m
h − eβ⋅Q

πm,m
h ) (smh , amh )

(ii)= qmh,1 (smh , amh ) − qmh,2 (smh , amh ) + qmh,2 (smh , amh ) − qmh,3 (smh , amh )
(iii)
≤ 4Γm

h + ∣eβ(H−h+1) − 1∣BP,E + gh(β)Br,E + qmh,2 (smh , amh ) − qmh,3 (smh , amh )
=4Γm

h + ∣eβ(H−h+1) − 1∣BP,E + gh(β)Br,E + eβ⋅r
m
h (s

m
h ,am

h )δmh+1 + ζmh+1. (21)

In the above equation, step (i) holds by the construction of Algorithm 1 and the definition of V πm

h in
Equation (2b); step (ii) holds by Equations (11) and (12); step (iii) holds on the event of Lemma B.4;
the last step follows from the definition of δmh and ζmh in Equations 20a and 20b.

Using the fact that V m
H+1(s) = V πm

H+1(s) = 0, we can expand the recursion in Equation (21) to obtain

δm1 ≤ ∑
h∈[H]

eβ∑
h−1
i=1 rmi ζmh+1 + ∑

h∈[H]
eβ∑

h−1
i=1 rmi (4Γm

h + ∣eβ(H−h+1) − 1∣BP,E + gh(β)Br,E)

≤ ∑
h∈[H]

eβ∑
h−1
i=1 rmi ζmh+1 + ∑

h∈[H]
eβ(h−1) (4Γm

h + ∣eβ(H−h+1) − 1∣BP,E + gh(β)Br,E) .

where the last step follows from rmh (⋅, ⋅) ∈ [0,1]. Summing the above display over m ∈ [M] gives

∑
m∈[M]

δm1

≤ ∑
m∈[M]

∑
h∈[H]

eβ∑
h−1
i=1 rmi ζmh+1 + ∑

m∈[M]
∑

h∈[H]
eβ(h−1) (4Γm

h + ∣eβ(H−h+1) − 1∣BP,E + gh(β)Br,E)

=
⌈M
W
⌉

∑
E=1

EW
∑

m=(E−1)W
∑

h∈[H]
(eβ∑

h−1
i=1 rmi ζmh+1 + eβ(h−1) (4Γm

h + ∣eβ(H−h+1) − 1∣BP,E + gh(β)Br,E))

=
⌈M
W
⌉

∑
E=1

EW
∑

m=(E−1)W
∑

h∈[H]
(eβ∑

h−1
i=1 rmi ζmh+1 + 4eβ(h−1)Γm

h ) +WH (∣eβH − 1∣BP + g1(β)Br) . (22)

We aim to control the terms in (22). Since {eβ∑h−1
i=1 rmi ζmh+1} is a martingale difference sequence

satisfying ∣eβ∑h−1
i=1 rmi ζmh+1∣ ≤ 2∣eβH − 1∣ for all (m,h) ∈ [M] × [H], by the Azuma-Hoeffding

inequality, we have:

P
⎛
⎝ ∑m∈[M]

∑
h∈[H]

eβ∑
h−1
i=1 rmi ζmh+1 ≥ t

⎞
⎠
≤ exp(− t2

8HM (eβH − 1)2
) , ∀t > 0.

Hence, with probability 1 − δ/2, it holds that

∑
k∈[K]

∑
h∈[H]

eβ(h−1)ζmh+1 ≤ (eβH − 1)
√
2HM log(2/δ) ≤ 2 (eβH − 1)

√
2HMι, (23)
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where ι = log(6H ∣S∣ ∣A∣W /δ). Furthermore, recall the definition of Γm
h , we can derive

EW
∑

m=(E−1)W
∑

h∈[H]
eβ(h−1)Γm

h

≤
EW
∑

m=(E−1)W
∑

h∈[H]
(C1 ∣eβ(H−h+1) − 1∣ + gh(β))

√
∣S∣ ι
¿
ÁÁÀ 1

Nm
h (smh , amh ) + 1

≤ (C1 ∣eβH − 1∣ + g1(β))
√
∣S∣ ι

EW
∑

m=(E−1)W
∑

h∈[H]

¿
ÁÁÀ 1

Nm
h (smh , amh ) + 1

(i)
≤ (C1 ∣eβH − 1∣ + g1(β))

√
∣S∣ ι ∑

h∈[H]

√
W

¿
ÁÁÁÀ

EW
∑

m=(E−1)W

1

Nm
h (smh , amh ) + 1

≤ (C1 ∣eβH − 1∣ + g1(β))
√
∣S∣ ι
√
2H2∣S∣∣A∣Wι

where step (i) follows the Cauchy-Schwarz inequality and the last step holds by the pigeonhole
principle. Thus, it holds that

∑
m∈[M]

∑
h∈[H]

eβ(h−1)Γm
h ≤ (C1 ∣eβH − 1∣ + eβH ∣β∣)

√
2H2∣S∣2∣A∣ι2 M√

W
. (24)

Substituting (23) and (24) into (22) yields that

∑
m∈[M]

δm1 ≤2 ∣eβH − 1∣
√
2HMι + (C1 ∣eβH − 1∣ + g1(β))

√
2H2∣S∣2∣A∣ι2 M√

W
(25)

+WH (∣eβH − 1∣BP + g1(β)Br)

For β > 0, we have that g1(β) = eβHβ and the dynamic regret can be decomposed based on Lemma
F.1:

D-Regret(M)

≤ ∑
m∈[M]

1

β
[eβ⋅V

∗,m
1 (sm1 ) − eβ⋅V

m
1 (s

m
1 )] + ∑

m∈[M]

1

β
[eβ⋅V

m
1 (s

m
1 ) − eβ⋅V

πm,m
1 (sm1 )]

≤ 1
β

⌈M
W
⌉

∑
E=1

EW
∑

m=(E−1)W
H (∣eβH − 1∣BP,E + g1(β)Br,E) + ∑

m∈[M]

1

β
[eβ⋅V

m
1 (s

m
1 ) − eβ⋅V

πm,m
1 (sm1 )]

≤ 1
β
WH (∣eβH − 1∣BP + g1(β)Br) +

1

β
∑

m∈[M]
δm1

≤ 1
β
(2 (eβH − 1)

√
2HMι + (C1 (eβH − 1) + eβHβ)

√
2H2∣S∣2∣A∣ι2 M√

W

+WH ((eβH − 1)BP + eβHβBr))

≤2eβHH
√
2HMι + eβH (C1H + 1)

√
2H2∣S∣2∣A∣ι2 M√

W
+WHeβH (HBP +Br)

≤2eβHH
√
2HMι + (C1 + 1)eβHH

√
2H2∣S∣2∣A∣ι2 M√

W
+WH2eβH (BP +Br) (26)

where the second inequality follows from Lemma B.6, the third inequality holds because of the
definition of BP , Br and δm1 , the forth inequality is due to (25), and the fifth inequality follows from
eβH − 1 ≤ βHeβH for β > 0.

Finally, by setting W =M 2
3 (BP +Br)−

2
3 ∣S∣ 23 ∣A∣ 13 , we conclude that

D-Regret(M) ≤Õ (eβH ∣S∣ 23 ∣A∣ 13H2M
2
3 (BP +Br)

1
3 ) .

The proof of β < 0 follows a similar procedure and is therefore omitted.
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C Proof of Theorem 3.2

C.1 Preliminaries

We first lay out some additional notations to facilitate our proof. Let Nm
h ,G

m
h , V

m
h be Nh,Gh, Vh

at the beginning of episode m, before t is updated. We also set Qm
h ∶= 1

β
Gm

h . Let P̂m
h (⋅ ∣ s, a)

denote the delta function centered at smh+1 for all (m,h, s, a) ∈ [M] × [H] × S ×A. This means that
Es′∼P̂m

h
(⋅∣s,a) [f (s′)] = f (smh+1) for every f ∶ S → R. Denote by nmh ∶= Nm

h (smh , amh ). Recall from
Algorithm 2 that the learning rate is defined as

αt ∶=
H + 1
H + t

for t ∈ Z. We also define

α0
t ∶=

t

∏
j=1
(1 − αj) , αi

t ∶= αi

t

∏
j=i+1

(1 − αj) (27)

for integers i, t ≥ 1. We set α0
t = 1 and ∑i∈[t] α

i
t = 0 if t = 0, and αi

t = αi if t < i + 1.

The epoch is defined as an interval that starts at the first episode after a restart and ends at the first
time when the restart is triggered. In Algorithm 2, the restart mechanism divides M episodes into
⌈M
W
⌉ epochs.

Define the shorthand notation ι ∶= log(∣S∣∣A∣MH/δ) for δ ∈ (0,1]. We fix a tuple (m,h, s, a) ∈
[M] × [H]× S ×A with mEi ≤M being the episode in which (s, a) is visited the i-th time at step h
in epoch E . Let us define

qm,+
h,1 (s, a) ∶= α

0
t e

β(H−h+1) +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑i∈[t] α
i
t

⎡⎢⎢⎢⎢⎣
e
β[rm

E

i
h
(s,a)+V mEi

h+1
(sm

E

i
h+1
)]
+ Γh,i

⎤⎥⎥⎥⎥⎦
, if β > 0,

∑i∈[t] α
i
t

⎡⎢⎢⎢⎢⎣
e
β[rm

E

i
h
(s,a)+V mEi

h+1
(sm

E

i
h+1
)]
− Γh,i

⎤⎥⎥⎥⎥⎦
, if β < 0,

qmh,1(s, a) ∶=
⎧⎪⎪⎨⎪⎪⎩

min{qm,+
h,1 (s, a), eβ(H−h+1)} , if β > 0,

max{qm,+
h,1 (s, a), eβ(H−h+1)} , if β < 0,

and

qm,○
h,2 (s, a) ∶= α

0
t e

β(H−h+1) + ∑
i∈[t]

αi
t

⎡⎢⎢⎢⎢⎣
e
β[rm

E

i
h
(s,a)+V ∗,m

E

i
h+1

(sm
E

i
h+1
)]⎤⎥⎥⎥⎥⎦

qm,+
h,2 (s, a) ∶= α

0
t e

β(H−h+1) +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑i∈[t] α
i
t

⎡⎢⎢⎢⎢⎣
e
β[rm

E

i
h
(s,a)+V ∗,m

E

i
h+1

(sm
E

i
h+1
)]
+ Γh,i

⎤⎥⎥⎥⎥⎦
, if β > 0

∑i∈[t] α
i
t

⎡⎢⎢⎢⎢⎣
e
β[rm

E

i
h
(s,a)+V ∗,m

E

i
h+1

(sm
E

i
h+1
)]
− Γh,i

⎤⎥⎥⎥⎥⎦
, if β < 0

qmh,2(s, a) ∶=
⎧⎪⎪⎨⎪⎪⎩

min{qm,+
h,2 (s, a), eβ(H−h+1)} , if β > 0

max{qm,+
h,2 (s, a), eβ(H−h+1)} , if β < 0

and
qmh,3(s, a) ∶= α0

t e
β⋅Q∗,m

h
(s,a) + ∑

i∈[t]
αi
t [Es′∼Pm

h
(⋅∣s,a)e

β[rmh (s,a)+V
∗,m
h+1

(s′)]] .

By the definition of qm,○
h,2 , qm,+

h,2 and qmh,2, it can be seen that qm,○
h,2 ≤ qmh,2 if β > 0, and qm,○

h,2 ≥ qmh,2 if

β < 0. In addition, by definition, we have (eβ⋅Qm
h − eβ⋅Q∗,mh ) (s, a) = (qmh,1 − qmh,3) (s, a).
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C.2 Value difference bounds

Lemma C.1 For every triple (s, a, h) and episodes m1,m2 in the epoch E , it holds that
∣V ∗,m1

h (s) − V ∗,m2

h (s)∣ ≤ Br,E +HBP,E .

Proof. Let a1 = argmaxaQ
∗,m1

h (s, a) and a2 = argmaxaQ
∗,m2

h (s, a), it holds that

V ∗,m1

h (s) = Q∗,m1

h (s, a1) ≥ Q∗,m1

h (s, a2) ≥Q∗,m2

h (s, a2) −Br,E −HBP,E

=V ∗,m2

h (s) −Br,E −HBP,E

where the second inequality follows from [31, Lemma 1]. Similarly, we have

V ∗,m2

h (s) ≥ V ∗,m1

h (s) −Br,E −HBP,E .

This completes the proof. ◻

Lemma C.2 For every (m,h, s, a) ∈ [M] × [H] × S ×A and m1, . . . ,mt < m with t = Nm
h (s, a),

we have
RRRRRRRRRRRR
∑
i∈[t]

αi
t

⎡⎢⎢⎢⎢⎣
e
β[rm

E

i
h
(s,a)+V ∗,m

E

i
h+1

(sm
E

i
h+1
)]
− Es′∼Pm

h
(⋅∣s,a) [eβ[r

m
h (s,a)+V

∗,m
h+1

(s′)]]
⎤⎥⎥⎥⎥⎦

RRRRRRRRRRRR
≤Γh,t + 2gh(β)Br,E + (gh(β)H + ∣eβ(H−h+1) − 1∣)BP,E

with probability at least 1 − δ, and

∑
i∈[t]

αi
tΓh,i ∈ [Γh,t,2Γh,t] ,

where Γh,t is defined in (7).

Proof. For every (m,h, s, a) ∈ [M] × [H] × S ×A, we have the following decomposition:

e
β[rm

E

i
h
(s,a)+V ∗,m

E

i
h+1

(sm
E

i
h+1
)]
− Es′∼Pm

h
(⋅∣s,a) [eβ[r

m
h (s,a)+V

∗,m
h+1

(s′)]]

=e
β[rm

E

i
h
(s,a)+V ∗,m

E

i
h+1

(sm
E

i
h+1
)]
− e

β[rmh (s,a)+V
∗,mEi
h+1

(sm
E

i
h+1
)]

(28a)

+ e
β[rmh (s,a)+V

∗,mEi
h+1

(sm
E

i
h+1
)]
− e

β[rmh (s,a)+V
∗,m
h+1

(sm
E

i
h+1
)]

(28b)

+ e
β[rmh (s,a)+V

∗,m
h+1

(sm
E

i
h+1
)]
− E

s′∼P
mE

i
h
(⋅∣s,a)

[eβ[r
m
h (s,a)+V

∗,m
h+1

(s′)]] (28c)

+ E
s′∼P

mE
i

h
(⋅∣s,a)

[eβ[r
m
h (s,a)+V

∗,m
h+1

(s′)]] − Es′∼Pm
h
(⋅∣s,a) [eβ[r

m
h (s,a)+V

∗,m
h+1

(s′)]] . (28d)

For the terms in (28a), it holds that
RRRRRRRRRRRR
e
β[rm

E

i
h
(s,a)+V ∗,m

E

i
h+1

(sm
E

i
h+1
)]
− e

β[rmh (s,a)+V
∗,mEi
h+1

(sm
E

i
h+1
)]
RRRRRRRRRRRR
≤gh(β) ∣rm

E

i

h (s, a) − r
m
h (s, a)∣

≤gh(β)Br,ϵ, (29)

where the first inequality follows from the Lipschitz continuity of eβx with respect to x and the
second inequality is due to the definition of the local variation budget Br,ϵ.

For the terms in (28b), it holds that
RRRRRRRRRRRR
e
β[rmh (s,a)+V

∗,mEi
h+1

(sm
E

i
h+1
)]
− e

β[rmh (s,a)+V
∗,m
h+1

(sm
E

i
h+1
)]
RRRRRRRRRRRR
≤gh(β) ∣V ∗,m

E

i

h+1 (sm
E

i

h+1) − V
∗,m
h+1 (s

mEi
h+1)∣

≤gh(β) (Br,E +HBP,E) (30)
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where the second inequality follows from Lemma C.1.

For the terms in (28d), we have

∣E
s′∼P

mE
i

h
(⋅∣s,a)

[eβ[r
m
h (s,a)+V

∗,m
h+1

(s′)]] − Es′∼Pm
h
(⋅∣s,a) [eβ[r

m
h (s,a)+V

∗,m
h+1

(s′)]]∣

= ∣E
s′∼P

mE
i

h
(⋅∣s,a)

[eβ[r
m
h (s,a)+V

∗,m
h+1

(s′)] − 1] − Es′∼Pm
h
(⋅∣s,a) [eβ[r

m
h (s,a)+V

∗,m
h+1

(s′)] − 1]∣

≤ ∣eβ(H−h+1) − 1∣BP,E (31)

where the first step follows from Pm
h 1(s, a) = Pτ

h1(s, a) for all τ ∈ [ℓm,m − 1] and the last step
holds by the definition of BP,E .

We now analyze the terms in (28c). For every (m,h, s, a) ∈ [M] × [H] × S ×A, we define

ψ(i,m,h, s, a) ∶= e
β[rmh (s,a)+V

∗,m
h+1

(sm
E

i
h+1
)]
− E

s′∼P
mE

i
h
(⋅∣s,a)

[eβ[r
m
h (s,a)+V

∗,m
h+1

(s′)]] .

For a fix tuple (m,h, s, a) ∈ [M] × [H] × S × A, {ψ(i,m,h, s, a)}i∈[t] with t = Nm
h (s, a) is

a martingale difference sequence. By the Azuma-Hoeffding inequality, with probability at least
1 − δ/(HM ∣S∣∣A∣), it holds that
RRRRRRRRRRRR
∑
i∈[t]

αi
t ⋅ ψ(i,m,h, s, a)

RRRRRRRRRRRR
≤ C2

2
∣eβ(H−h+1) − 1∣

√
ι ∑
i∈[t]
(αi

t)
2 ≤ C2 ∣eβ(H−h+1) − 1∣

√
Hι

t

where C2 > 0 is some universal constant, the first step holds since rh(s, a)+V ∗h+1 (s′) ∈ [0,H−h+1]
for s′ ∈ S, and the last step follows from the second property in Lemma F.3. Then, applying the
union bound over (m,h, s, a) ∈ [M] × [H] × S × A, we have that the following holds for all
(m,h, s, a) ∈ [M] × [H] × S ×A with probability at least 1 − δ :

RRRRRRRRRRRR
∑
i∈[t]

αi
t ⋅ ψ(i,m,h, s, a)

RRRRRRRRRRRR
≤ C2 ∣eβ(H−h+1) − 1∣

√
Hι

t
, (32)

where t = Nm
h (s, a).

Finally, by combining Equations (29)-(32) and noticing that ∑i∈[t] α
i
t = 1 from the forth property in

Lemma F.3, we have
RRRRRRRRRRRR
∑
i∈[t]

αi
t

⎡⎢⎢⎢⎢⎣
e
β[rm

E

i
h
(s,a)+V ∗,m

E

i
h+1

(sm
E

i
h+1
)]
− Es′∼Pm

h
(⋅∣s,a) [eβ[r

m
h (s,a)+V

∗,m
h+1

(s′)]]
⎤⎥⎥⎥⎥⎦

RRRRRRRRRRRR

≤C2 ∣eβ(H−h+1) − 1∣
√

Hι

t
+ 2gh(β)Br,E + (gh(β)H + ∣eβ(H−h+1) − 1∣)BP,E

For bounds on ∑i∈[t] α
i
tΓh,i, we recall the definition of {Γh,t} in (7) and compute

∑
i∈[t]

αi
tΓh,i = C2 ∣eβ(H−h+1) − 1∣ ∑

i∈[t]
αi
t

√
Hι

i

∈
⎡⎢⎢⎢⎢⎣
C2 ∣eβ(H−h+1) − 1∣

√
Hι

t
,2C2 ∣eβ(H−h+1) − 1∣

√
Hι

t

⎤⎥⎥⎥⎥⎦
where the last step holds by the first property in Lemma F.3. ◻

Lemma C.3 For all (m,h, s, a) and δ ∈ (0,1], the following statements hold with probability at
least 1 − δ:

• If β > 0:

− 2eβ(H−h+1)βBr,E − (eβ(H−h+1)βH + (eβ(H−h+1) − 1))BP,E ≤ qmh,2(s, a) − qmh,3(s, a)
≤ α0

t (eβ(H−h+1) − 1) + 2 ∑
i∈[t]

αi
tΓh,i + 2eβ(H−h+1)βBr,E + (eβ(H−h+1)βH + (eβ(H−h+1) − 1))BP,E .
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• If β < 0:

2βBr,E − (−βH + (1 − eβ(H−h+1)))BP,E ≤ qmh,3(s, a) − qmh,2(s, a)
≤ α0

t (1 − eβ(H−h+1)) + 2 ∑
i∈[t]

αi
tΓh,i − 2βBr,E + (−βH + (1 − eβ(H−h+1)))BP,E .

Proof. We focus on the case where β > 0 and the case for β < 0 can be proved similarly. By the
definition of qm,+

h,2 and qmh,3, it holds that

qm,+
h,2 − q

m
h,3 =α0

t (eβ(H−h+1) − eβQ
∗,m
h
(s,a))

+ ∑
i∈[t]

αi
t

⎡⎢⎢⎢⎢⎣
e
β[rm

E

i
h
(s,a)+V ∗,m

E

i
h+1

(sm
E

i
h+1
)]
+ Γh,i − Es′∼Pm

h
(⋅∣s,a)e

β[rmh (s,a)+V
∗,m
h+1

(s′)]
⎤⎥⎥⎥⎥⎦
.

Due to eβ(H−h+1) ≥ eβQ∗,mh
(s,a) ≥ 1 and Lemma C.2, we have

qm,+
h,2 − q

m
h,3 ≥ − 2gh(β)Br,E − (gh(β)H + ∣eβ(H−h+1) − 1∣)BP,E

and
qm,+
h,2 − q

m
h,3 ≤α0

t (eβ(H−h+1) − 1) + 2 ∑
i∈[t]

αi
tΓh,i

+ 2gh(β)Br,E + (gh(β)H + ∣eβ(H−h+1) − 1∣)BP,E .

Furthermore, if qm,+
h,2 ≤ eβ(H−h+1), then we have qmh,2 = q

m,+
h,2 . On the other hand, if qm,+

h,2 ≥ eβ(H−h+1),
then qmh,2 = eβ(H−h+1) ≤ q

m,+
h,2 . Thus, it holds that 0 ≤ qmh,2 − qmh,3 ≤ q

m,+
h,2 − qmh,3. This completes the

proof. ◻

The next two lemmas compare the iterate eβ⋅Q
m
h (and eβ⋅V

m
h ) with the optimal exponential value

function eβ⋅Q
∗,m
h (and eβ⋅V

∗,m
h ).

Lemma C.4 For all (m,h, s, a) and δ ∈ (0,1], it holds with probability at least 1 − δ:

• If β > 0:

(eβQ
m
h − eβQ

∗,m
h )(s, a)

≥ − (H − h + 1) (2eβ(H−h+1)βBr,E + (eβ(H−h+1)βH + (eβ(H−h+1) − 1))BP,E) .

• If β < 0:

(eβQ
m
h − eβQ

∗,m
h )(s, a) ≤ (H − h + 1) (−2βBr,E + (−βH + (1 − eβ(H−h+1)))BP,E) .

Proof. We focus only on the case where β > 0 since the proof for β < 0 is similar. For the purpose
of the proof, we set Qm

H+1(s, a) = Q∗H+1(s, a) = 0 for all (m,s, a) ∈ [M] × S × A. We fix a pair
(s, a) ∈ S × A and use strong induction on m and h. Without loss of generality, we assume that
there exists a pair (m,h) such that (s, a) = (smh , amh ) (that is, (s, a) has been visited at some point in
Algorithm 2), since otherwise eβ⋅Q

m
h (s,a) = eβ(H−h+1) ≥ eβ⋅Q∗h(s,a) for all (m,h) ∈ [M] × [H] and

we are done.

The base case for m = 1 and h =H + 1 is satisfied since eβ⋅Q
m′

H+1(s,a) = eβ⋅Q∗,mH+1
(s,a) for m′ ∈ [M] by

definition. We fix a pair (m,h) ∈ [M] × [H] and assume that

eβ⋅Q
mEi
h+1
(s,a) − eβ⋅Q

∗,mEi
h+1

(s,a) ≥ −(H − h) (2eβ(H−h)βBr,E + (eβ(H−h)βH + (eβ(H−h) − 1))BP,E)
for each mE1 , . . . ,m

E
t (here t = Nm

h (s, a) ). We have for i ∈ [t] that

eβ⋅V
mEi
h+1
(s) =max

a′∈A
eβ⋅Q

mEi
h+1
(s,a′) − (H − h) (2eβ(H−h)βBr,E + (eβ(H−h)βH + (eβ(H−h) − 1))BP,E)

≥max
a′∈A

eβ⋅Q
∗,mEi
h+1

(s,a′) − (H − h) (2eβ(H−h)βBr,E + (eβ(H−h)βH + (eβ(H−h) − 1))BP,E)

=eβ⋅V
∗,mEi
h+1

(s) − (H − h) (2eβ(H−h)βBr,E + (eβ(H−h)βH + (eβ(H−h) − 1))BP,E) (33)

23



where the first equality holds by the update procedure in Algorithm 2. Then, it holds that

(qm,+
h,1 − q

m
h,2)(s, a) ≥ (qm,+

h,1 − q
m,+
h,2 )(s, a)

≥ ∑
i∈[t]

αi
t

⎡⎢⎢⎢⎢⎣
e
β[rm

E

i
h
(s,a)+V mEi

h+1
(sm

E

i
h+1
)]
− e

β[rm
E

i
h
(s,a)+V ∗,m

E

i
h+1

(sm
E

i
h+1
)]⎤⎥⎥⎥⎥⎦

= ∑
i∈[t]

αi
te

βr
mEi
h
(s,a)
⎡⎢⎢⎢⎢⎣
e
β[V mEi

h+1
(sm

E

i
h+1
)]
− e

β[V ∗,m
E

i
h+1

(sm
E

i
h+1
)]⎤⎥⎥⎥⎥⎦

≥ −(H − h) ∑
i∈[t]

αi
te

β (2eβ(H−h)βBr,E + (eβ(H−h)βH + (eβ(H−h) − 1))BP,E)

≥ −(H − h) ∑
i∈[t]

αi
t (2eβ(H−h+1)βBr,E + (eβ(H−h+1)βH + (eβ(H−h+1) − 1))BP,E)

≥ −(H − h) (2eβ(H−h+1)βBr,E + (eβ(H−h+1)βH + (eβ(H−h+1) − 1))BP,E)

where the first inequality follows from the definitions of qm,+
h,1 , qm,+

h,2 , the second inequality holds by
the induction hypothesis, the third inequality follows from eβ > 1 for β > 0, and the last inequality
holds by ∑i∈[t] α

i
t ≤ 1 from Lemma F.3. Furthermore, when qmh,1 = eβ(H−h+1) ≤ q

m,+
h,1 , we have

qmh,1 − qmh,2 ≥ 0 since qmh,2 ≤ eβ(H−h+1) by definition. Thus, we can conclude that

(qmh,1 − qmh,2)(s, a) ≥ −(H − h) (2eβ(H−h+1)βBr,E + (eβ(H−h+1)βH + (eβ(H−h+1) − 1))BP,E)
(34)

In addition, from Lemma C.3 , we also have

(qmh,2 − qmh,3)(s, a) ≥ −2eβ(H−h+1)βBr,E − (eβ(H−h+1)βH + (eβ(H−h+1) − 1))BP,E (35)

Finally, by combining (34) and (35), we obtain

(eβQ
m
h − eβQ

∗,m
h )(s, a)

=(qmh,1 − qmh,2)(s, a) + (qmh,2 − qmh,3)(s, a)
≥ − (H − h + 1) (2eβ(H−h+1)βBr,E + (eβ(H−h+1)βH + (eβ(H−h+1) − 1))BP,E) .

The induction is completed. ◻

Lemma C.5 For all (m,h, s, a) and δ ∈ (0,1], it holds with probability at least 1 − δ:

• If β > 0:

(eβQ
m
h − eβQ

∗,m
h )(s, a)

≤ ∑
i∈[t]

αi
te

βr
mEi
h
(s,a)
⎡⎢⎢⎢⎢⎣
e
β[V mEi

h+1
(sm

E

i
h+1
)]
− e

β[V ∗,m
E

i
h+1

(sm
E

i
h+1
)]⎤⎥⎥⎥⎥⎦
+ 3 ∑

i∈[t]
αi
tΓh,i

+ α0
t (eβ(H−h+1) − 1) + 2eβ(H−h+1)βBr,E + (eβ(H−h+1)βH + (eβ(H−h+1) − 1))BP,E .

• If β < 0:

(eβQ
m
h − eβQ

∗,m
h )(s, a)

≥ ∑
i∈[t]

αi
te

βr
mEi
h
(s,a)
⎡⎢⎢⎢⎢⎣
e
β[V ∗,m

E

i
h+1

(sm
E

i
h+1
)]
− e

β[V mEi
h+1
(sm

E

i
h+1
)]⎤⎥⎥⎥⎥⎦
− 3 ∑

i∈[t]
αi
tΓh,i

− α0
t (1 − eβ(H−h+1)) + 2βBr,E − (−βH + (1 − eβ(H−h+1)))BP,E .
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Proof. We focus on the case where β > 0 since the case for β < 0 can be proved similarly. By the
definition of qmh,1 and qmh,2, we have

(qmh,1 − qmh,2) (s, a) ≤(qm,+
h,1 − q

m,○
h,2 ) (s, a)

≤ ∑
i∈[t]

αi
t

⎡⎢⎢⎢⎢⎣
e
β[rm

E

i
h
(s,a)+V mEi

h+1
(sm

E

i
h+1
)]
− e

β[rm
E

i
h
(s,a)+V ∗,m

E

i
h+1

(sm
E

i
h+1
)]⎤⎥⎥⎥⎥⎦
+ ∑

i∈[t]
αi
tΓh,i

= ∑
i∈[t]

αi
te

βr
mEi
h
(s,a)
⎡⎢⎢⎢⎢⎣
e
β[V mEi

h+1
(sm

E

i
h+1
)]
− e

β[V ∗,m
E

i
h+1

(sm
E

i
h+1
)]⎤⎥⎥⎥⎥⎦
+ ∑

i∈[t]
αi
tΓh,i

where the first inequality follows from qmh,1 ≤ q
m,+
h,1 and qmh,2 ≥ q

m,○
h,2 , and the second inequality holds

by the definition of qm,+
h,1 and qm,○

h,2 . Then, by Lemma C.3, we obtain

(eβQ
m
h − eβQ

∗,m
h )(s, a)

=(qmh,1 − qmh,2)(s, a) + (qmh,2 − qmh,3)(s, a)

≤ ∑
i∈[t]

αi
te

βr
mEi
h
(s,a)
⎡⎢⎢⎢⎢⎣
e
β[V mEi

h+1
(sm

E

i
h+1
)]
− e

β[V ∗,m
E

i
h+1

(sm
E

i
h+1
)]⎤⎥⎥⎥⎥⎦
+ 3 ∑

i∈[t]
αi
tΓh,i

+ α0
t (eβ(H−h+1) − 1) + 2eβ(H−h+1)βBr,E + (eβ(H−h+1)βH + (eβ(H−h+1) − 1))BP,E .

This completes the proof. ◻

C.3 Proof of Theorem 3.2

For now, we consider the case for β > 0. We define the following quantities to ease the notations for
the proof:

δmh ∶= eβ⋅V
m
h (s

m
h ) − eβ⋅V

πm

h (smh ),

ϕmh ∶= eβ⋅V
m
h (s

m
h ) − eβ⋅V

∗,m
h

(smh ),

ξmh+1 ∶= [(Pm
h − P̂m

h )(eβ⋅V
∗,m
h+1 − eβ⋅V

πm

h+1 )] (smh , amh )

For each fixed (m,h) ∈ [M] × [H], we let t = Nm
h (smh , amh ). Then, it holds that

δmh
(i)= eβ⋅Q

m
h (s

m
h ,am

h ) − eβ⋅Q
πm,m
h

(smh ,am
h )

= [eβ⋅Q
m
h (s

m
h ,am

h ) − eβ⋅Q
∗,m
h
(smh ,am

h )] + [eβ⋅Q
∗,m
h
(smh ,am

h ) − eβ⋅Q
πm

h (smh ,am
h )]

(ii)= [eβ⋅Q
m
h (s

m
h ,am

h ) − eβ⋅Q
∗,m
h
(smh ,am

h )] + eβ⋅r
m
h (s

m
h ,am

h ) [Pm
h (eβ⋅V

∗,m
h+1 − eβ⋅V

πm,m
h+1 )] (smh , amh )

(iii)
≤ [eβ⋅Q

m
h (s

m
h ,am

h ) − eβ⋅Q
∗,m
h
(smh ,am

h )] + eβ [Pm
h (eβ⋅V

∗,m
h+1 − eβ⋅V

πm,m
h+1

)) (smh , amh )

= [eβ⋅Q
m
h (s

m
h ,am

h ) − eβ⋅Q
∗,m
h
(smh ,am

h )] + eβ (δmh+1 − ϕmh+1 + ξmh+1)

(iv)
≤ α0

t (eβ(H−h+1) − 1) + 3 ∑
i∈[t]

αi
tΓh,i + ∑

i∈[t]
αi
t ⋅ eβ⋅r

mEi
h
(smh ,am

h )
⎡⎢⎢⎢⎢⎣
e
β⋅V mEi

h+1
(sm

E

i
h+1
)
− e

β⋅V ∗h+1(s
mEi
h+1
)⎤⎥⎥⎥⎥⎦

+ 2eβ(H−h+1)βBr,E + (eβ(H−h+1)βH + (eβ(H−h+1) − 1))BP,E

+ eβ (δmh+1 − ϕmh+1 + ξmh+1)

=α0
t (eβ(H−h+1) − 1) + ∑

i∈[t]
αi
t ⋅ eβ⋅r

mEi
h
(smh ,am

h )ϕ
mEi
h+1 + e

β (δmh+1 − ϕmh+1 + ξmh+1) (36)

+ 3 ∑
i∈[t]

αi
tΓh,i + 2eβ(H−h+1)βBr,E + (eβ(H−h+1)βH + (eβ(H−h+1) − 1))BP,E (37)
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where step (i) holds since V m
h (smh ) = maxa′∈AQ

m
h (smh , a′) = Qm

h (smh , amh ) and V πm,m
h (smh ) =

Qπm,m
h (smh , πm

h (smh )) = Q
πm,m
h (smh , amh ); step (ii) holds by the exponential Bellman equation (3);

step (iii) holds since V ∗,mh+1 ≥ V
πm,m
h+1 implies eβ⋅V

∗,m
h+1 ≥ eβ⋅V πm,m

h+1 given that β > 0; step (iv) holds on
the event of Lemma C.5.

We bound each term in (36) and (37) one by one. First, we have

∑
m∈[M]

α0
nm
h
(eβ(H−h+1) − 1) = (eβ(H−h+1) − 1) ∑

m∈[M]
1{nmh = 0}

≤ (eβ(H−h+1) − 1) ∣S∣∣A∣.

To bound the second term in (36), we first define

ϕ̂
mEi (s

m
h ,am

h )
h+1 ∶= ϕm

E

i (s
m
h ,am

h )
h+1 + (H − h) (2eβ(H−h)βBr,E + (eβ(H−h)βH + (eβ(H−h) − 1))BP,E)

which is non-negative from Lemma C.4 and (33):

∑
m∈[M]

⎛
⎝∑i∈[t]

αi
t ⋅ eβ⋅r

mEi
h
(smh ,am

h )ϕ
mEi
h+1
⎞
⎠
= ∑
m∈[M]

⎛
⎜
⎝
∑

i∈[nm
h
]
αi
nm
h
⋅ eβ⋅r

mEi
h
(smh ,am

h )ϕ
mEi (s

m
h ,am

h )
h+1

⎞
⎟
⎠

≤eβ ∑
m∈[M]

⎛
⎜
⎝
∑

i∈[nm
h
]
αi
nm
h
ϕ̂
mEi (s

m
h ,am

h )
h+1

⎞
⎟
⎠

where mEi (smh , amh ) denotes the episode in which (smh , amh ) was taken at step h for the i-th time
in the epoch E . We re-group the above summation by changing the order of the summation. For
every m̂E in the epoch E , the term ϕm̂

E

h+1 appears in the summand with m > m̂E if and only if
(smh , amh ) = (sm

′

h , am
′

h ) and the episode m is in the epoch E . Since the inverse of the mapping

i→mEi (smh , amh ) is m̂E → nm̂
E

h , we can continue the above display as

eβ ∑
m∈[M]

⎛
⎜
⎝
∑

i∈[nm
h
]
αi
nm
h
ϕ̂
mEi (s

m
h am

h )
h+1

⎞
⎟
⎠
≤ eβ

⌈M
W
⌉

∑
E=1

EW
∑

m=(E−1)W

⎛
⎜
⎝
∑

i∈[nm
h
]
αi
nm
h
ϕ̂
mEi (s

m
h am

h )
h+1

⎞
⎟
⎠

≤ eβ
⌈M
W
⌉

∑
E=1

EW
∑

m′=(E−1)W
ϕ̂m

′

h+1
⎛
⎜
⎝
∑

t≥nm′

h
+1
α
nm′

h
t

⎞
⎟
⎠

≤ eβ (1 + 1

H
)
⌈M
W
⌉

∑
E=1

EW
∑

m′=(E−1)W
ϕ̂m

′

h+1
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where the last step follows the third property in Lemma F.3. Collecting the above results and
substituting them into (36)-(37), we have

∑
m∈[M]

δmh ≤(eβ(H−h+1) − 1) ∣S∣∣A∣ + (1 +
1

H
) eβ

⌈M
W
⌉

∑
E=1

EW
∑

m=(E−1)W
ϕ̂mh+1

+
⌈M
W
⌉

∑
E=1

EW
∑

m=(E−1)W
eβ (δmh+1 − ϕmh+1 + ξmh+1) + 3

⌈M
W
⌉

∑
E=1

EW
∑

m=(E−1)W
∑
i∈[t]

αi
tΓh,i

+
⌈M
W
⌉

∑
E=1

EW
∑

m=(E−1)W
(2eβ(H−h+1)βBr,E + (eβ(H−h+1)βH + (eβ(H−h+1) − 1))BP,E)

≤ (eβ(H−h+1) − 1) ∣S∣∣A∣ + (1 + 1

H
)
⌈M
W
⌉

∑
E=1

EW
∑

m=(E−1)W
eβδmh+1

+
⌈M
W
⌉

∑
E=1

EW
∑

m=(E−1)W

⎛
⎝
3 ∑
i∈[t]

αi
tΓh,i + eβξmh+1

⎞
⎠

+ 3(H − h)
⌈M
W
⌉

∑
E=1

EW
∑

m=(E−1)W
(2eβ(H−h+1)βBr,E + (eβ(H−h+1)βH + (eβ(H−h+1) − 1))BP,E)

≤ (eβ(H−h+1) − 1) ∣S∣∣A∣ + (1 + 1

H
) ∑
m∈[M]

eβδmh+1

+ 3
⌈M
W
⌉

∑
E=1

EW
∑

m=(E−1)W
∑
i∈[t]

αi
tΓh,i + ∑

m∈[M]
eβξmh+1

+ 3(H − h) (2eβ(H−h+1)βWBr + (eβ(H−h+1)βH + (eβ(H−h+1) − 1))WBP)

where the second step holds since δmh+1 ≥ ϕmh+1 (due to the fact that β > 0 and V ∗,mh+1 ≥ V
πm,m
h+1 ) and

the definition of ϕ̂mh+1; the last step follows from the definition of Br and BP . Now, we unroll the
quantity ∑m∈[M] δ

m
h recursively in the form of Equation (36), and get

∑
m∈[M]

δm1 (38)

≤ ∑
h∈[H]

[(1 + 1

H
) eβ]

h−1 ⎡⎢⎢⎢⎢⎣
(eβ(H−h+1) − 1) ∣S∣∣A∣ + 3

⌈M
W
⌉

∑
E=1

EW
∑

m=(E−1)W
∑
i∈[t]

αi
tΓh,i + ∑

m∈[M]
(eβξmh+1)

+3(H − h) (2eβ(H−h+1)βWBr + (eβ(H−h+1)βH + (eβ(H−h+1) − 1))WBP)]

≤ ∑
h∈[H]

(1 + 1

H
)
h−1 ⎡⎢⎢⎢⎢⎣

(eβH − 1) ∣S∣∣A∣ + 3
⌈M
W
⌉

∑
E=1

EW
∑

m=(E−1)W
eβ(h−1) ∑

i∈[t]
αi
tΓh,i + ∑

m∈[M]
eβhξmh+1

+3(H − h) (2eβHβWBr + (eβHβH + (eβH − 1))WBP)]

≤e
⎡⎢⎢⎢⎢⎣
(eβH − 1)H ∣S∣∣A∣ + 3e

⌈M
W
⌉

∑
E=1

EW
∑

m=(E−1)W
∑

h∈[H]
eβ(h−1) ∑

i∈[t]
αi
tΓh,i

⎤⎥⎥⎥⎥⎦
+ ∑

h∈[H]
∑

m∈[M]
(1 + 1

H
)
h−1

eβhξmh+1

+ 3eH2 (2eβHβWBr + (eβHβH + (eβH − 1))WBP)

where the first step uses the fact that δmH+1 = 0 for m ∈ [M]; the last step holds since (1 + 1/H)h ≤
(1 + 1/H)H ≤ e for all h ∈ [H]. Furthermore, the definition of Γh,i and Lemma F.3 imply that

∑
i∈[t]

αi
tΓh,i ≤ C2 (eβ(H−h+1)−1)

√
Hι

t
.

27



for some constant C2 > 0. By the pigeonhole principle, for any h ∈ [H] we have

⌈M
W
⌉

∑
E=1

EW
∑

m=(E−1)W
∑

h∈[H]
eβ(h−1) ∑

i∈[t]
αi
tΓh,i ≤ C2 (eβH − 1)

⌈M
W
⌉

∑
E=1

EW
∑

m=(E−1)W

¿
ÁÁÀHι

nmh

≤ C2 (eβH − 1)
⌈M
W
⌉

∑
E=1

√
W

¿
ÁÁÁÀ

EW
∑

m=(E−1)W

Hι

nmh

≤ C2 (eβH − 1)M
√
H ∣S∣∣A∣ι/W (39)

where the second step follows from the Cauchy-Schwarz inequality, the third step holds since
∑(s,a)∈S×ANm

h (s, a) =W and the right-hand side of the second step is maximized whenNm
h (s, a) =

W /(∣S∣∣A∣) for all (s, a) ∈ S × A. Finally, the Azuma-Hoeffding inequality and the fact that
∣(1 + 1

H
)h−1 eβhξmh+1∣ ≤ e (eβH − 1) for h ∈ [H] together imply that with probability at least 1 − δ,

we have
RRRRRRRRRRRR
∑

h∈[H]
∑

m∈[M]
(1 + 1

H
)
h−1

eβhξmh+1

RRRRRRRRRRRR
≤ C3 (eβH − 1)

√
HMι (40)

for some constant C3 > 0. Plugging Equations (39) and (40) into (38), we have

∑
m∈[M]

δm1 ≤O ((eβH − 1)M
√
H ∣S∣∣A∣ι/W + (eβH − 1)

√
HMι

+H2 (2eβHβWBr + (eβHβH + (eβH − 1))WBP)) (41)

when M is large enough. Invoking Lemma F.1 yields that

D-Regret(M)

≤ ∑
m∈[M]

1

β
[eβ⋅V

∗,m
1 (sm1 ) − eβ⋅V

m
1 (s

m
1 )] + ∑

m∈[M]

1

β
[eβ⋅V

m
1 (s

m
1 ) − eβ⋅V

πm,m
1 (sm1 )]

≤ 1
β

⌈M
W
⌉

∑
E=1

EW
∑

m=(E−1)W
H (2eβHβBr,E + (eβHβH + (eβH − 1))BP,E)

+ ∑
m∈[M]

1

β
[eβ⋅V

m
1 (s

m
1 ) − eβ⋅V

πm,m
1 (sm1 )]

≤ 1
β
WH (2eβHβBr + (eβHβH + (eβH − 1))BP) +

1

β
∑

m∈[M]
δm1

≤ 1
β
WH (2eβHβBr + (eβHβH + (eβH − 1))BP)

+ 1

β
O((eβH − 1)M

√
H ∣S∣∣A∣ι/W + (eβH − 1)

√
HMι

+ H2 (2eβHβWBr + (eβHβH + (eβH − 1))WBP))

≤O (eβHHM
√
H ∣S∣∣A∣ι/W + eβHH

√
HMι +H2eβHW (Br +HBP)) (42)

≤Õ (eβHM
√
H3∣S∣∣A∣/W + eβH

√
H3M +H3eβHW (Br +BP)) (43)

where the second step holds by (33), the third inequality holds because of the definition of BP , Br

and δm1 , the forth inequality is due to (41), and the fifth inequality follows from eβH − 1 ≤ βHeβH

for β > 0. Finally, by setting W =M 2
3H−

3
4 (BP +Br)−

2
3 ∣S∣ 13 ∣A∣ 13 , we conclude that

D-Regret(M) ≤Õ (eβH ∣S∣ 13 ∣A∣ 13H 9
4M

2
3 (BP +Br)

1
3 ) .
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The proof is similar for the case of β < 0, and one only needs to exchange the role of V m
h , V πm,m

h

and V ∗,mh in the definitions of δmh , ϕ
m
h , ξ

m
h :

δmh ∶= eβ⋅V
πm

h (smh ) − eβ⋅V
m
h (s

m
h ),

ϕmh ∶= eβ⋅V
∗,m
h

(smh ) − eβ⋅V
m
h (s

m
h ),

ξmh+1 ∶= [(Pm
h − P̂m

h )(eβ⋅V
πm

h+1 − eβ⋅V
∗,m
h+1 )] (smh , amh )

to derive the counterparts of (36) and (37), and complete the remaining analysis.

D Proof of Theorem 4.1

D.1 Multi-scale ALG Initialization

Algorithm 4 Multi-scale ALG Initialization (MALG-initialization)

1: Inputs: ALG and its associated ρ(⋅), n;
2: for τ = 0, . . . ,2n − 1 do
3: for k=n,n-1,. . . ,0 do
4: If τ is a multiple of 2k, with probability ρ(2n)

ρ(2k) , schedule a new instance alg of ALG that
starts at alg.s = τ + 1 and ends at alg.e = τ + 2k

5: end for
6: end for

D.2 An illustrative example

For better illustration, we give an example with n = 4. This example has also been shown in [40]
and we present here for completeness. By Algorithm 4, one possible realization of the MALG
initialization is shown in Figure 2 with one order-4 instance (red), zero order-3 instance, two order-2
instances (green), two order-1 instances (purple) and five order-0 instances (blue). The bolder part of
the segment indicates the period of time when the instances are active, while the thinner part indicates
the inactive period. At any point of time, the active instance is always the one with the shortest length.
The dashed arrow marked with 1 indicates that ALG is executed as of the two sides of the arrow are
concatenated. On the other hand, the two blue instances on the two sides of the dashed line marked
with 2 are two different order-0 instances, so the second one should start from scratch even though
they are consecutive.

D.3 Preliminaries

Similar to [40], our approach takes a base algorithm that tackles the risk-sensitive RL problem
when the environment is (near-)stationary, and turns it into another algorithm that can deal with
non-stationary environments. The base algorithm is assumed to satisfy the following requirement:

Assumption D.1 ALG outputs an auxiliary quantity eβV
m
1 (s1) ∈ [0, eβH] at the beginning of each

round m. There exist a non-stationarity measure ∆ and a non-increasing function ρ ∶ [M] → R
such that running ALG satisfies the following: for all m ∈ [M], as long as ∆[1,m] ≤ ρ(m), without
knowing ∆[1,m] ALG ensures with probability at least 1 − δ

M
: if β > 0, it holds that

eβV
m
1 (s1) ≥ min

τ∈[1,m]
eβV

∗,τ
1 (s1) −∆[1,m] and

1

m

m

∑
τ=1
(eβV

τ
1 (s1) − eβ∑

H
h=1 rτh) ≤ ρ(m) +∆[1,m],

and if β < 0, it holds that

max
τ∈[1,m]

eβV
∗,τ
1 (s1) ≥ eβV

m
1 (s1) −∆[1,m] and

1

m

m

∑
τ=1
(eβ∑

H
h=1 rτh − eβV

τ
1 (s1)) ≤ ρ(m) +∆[1,m],

Furthermore, we assume that ρ(m) ≥ 1√
m

and C(m) =mρ(m) is a non-decreasing function.
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Figure 2: An illustrate example of MALG with n = 4.

Under Assumption D.1, the multi-scale nature of MALG allows the learner’s regret to also enjoy a
multi-scale structure, as shown in the next lemma:

Lemma D.2 Let n̂ = log2M + 1 and ρ̂(m) = 6n̂ log(M/δ)ρ(m). MALG with input n ≤ log2M
guarantees the following: for every instance alg that MALG maintains and every m ∈ [alg.s, alg.e],
as long as ∆[alg.s ,t] ≤ ρ (m′) where m′ =m − alg.s + 1, we have with probability at least 1 − δ

M
: if

β > 0, it holds that

gm ≥ min
τ∈[alg.s,m]

eβV
∗,τ
1 (s1) −∆[alg.s ,t],

1

m′

m

∑
τ=alg.s

(gτ − eβ∑
H
h=1 rτh) ≤ ρ̂ (m′) + n̂∆[alg.s,m],

and if β < 0, it holds that

max
τ∈[alg.s,m]

eβV
∗,τ
1 (s1) ≥ gm −∆[alg.s ,t],

1

m′

m

∑
τ=alg.s

(eβ∑
H
h=1 rτh − gτ) ≤ ρ̂ (m′) + n̂∆[alg.s,m],

where gm is the UCB-based optimistic estimator eβV
m
1 (s1) for the unique active instance alg

at the episode m, and the number of instances started within [alg.s,m] is upper bounded by

6n̂ log(M/δ)C(m
′)

C(1) .

Proof. The proof is similar to that of Lemma 3 in [40] with the standard value functions replaced by
the exponential value functions and is thus omitted. ◻

Lemma D.2 states that even if there are multiple instances interleaving in a complicated way, the
regret for a specific interval is still almost the same as running ALG alone on this interval, due to
the carefully chosen probability ρ(2n)

ρ(2k) in Algorithm 4. Built on Lemma D.2, the regret on a single
block [mn,En], where En is either mn + 2n − 1 or something smaller in the case where a restart is
triggered, is bounded in the following lemma:

Lemma D.3 For Algorithm 3 with ALG satisfying Assumption D.1 and on every block J = [mn,En]
where En ≤mn + 2n − 1, it holds with high probability that:

⎧⎪⎪⎨⎪⎪⎩

∑τ∈J (eβV
∗,τ
1 (s1) −Rτ) ≤ Õ (∑ℓ

i=1C (∣I ′i ∣) + ∑n
m=0

ρ(2m)
ρ(2n)C (2

m)) , if β > 0,
∑τ∈J (Rτ − eβV

∗,τ
1 (s1)) ≤ Õ (∑ℓ

i=1C (∣I ′i ∣) + ∑n
m=0

ρ(2m)
ρ(2n)C (2

m)) , if β < 0,

where {I ′1, . . . ,I ′ℓ} is any partition of J such that ∆I′i ≤ ρ (∣I
′
i ∣) for all i.
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Proof. The proof is similar to that of Lemma 4 in [40] with the standard value functions replaced by
the exponential value functions and is thus omitted. ◻

Built on the dynamic regret over a block, we can further bound the dynamic regret over a single-epoch.
The epoch is defined as an interval that starts at the first episode after a restart and ends at the first
time when the restart is triggered.

Lemma D.4 Assume that C(m) takes the form of C(m) = c1m
1
2 for some constant c1. Then, for

Algorithm 3 with ALG satisfying Assumption D.1 and on every epoch E , it holds with high probability
that:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑τ∈E (eβV
∗,τ
1 (s1) −Rτ) ≤ Õ (c

2
3

1 ∆
1
3

E ∣E∣
2
3 + c1∣E∣

1
2 ) , if β > 0,

∑τ∈E (Rτ − eβV
∗,τ
1 (s1)) ≤ Õ (c

2
3

1 ∆
1
3

E ∣E∣
2
3 + c1∣E∣

1
2 ) , if β < 0,

Proof. The proof is similar to that of Lemma 22 in [40] with the standard value functions replaced by
the exponential value functions and is thus omitted. ◻

Finally, we have the following bound on the number of epoch:

Lemma D.5 (Lemma 24 in [40]) Assume that C(m) takes the form of C(m) = c1m
1
2 for some

constant c1. Then, with high probability, the number of epoch is upper-bounded by 1+2(c−
1
3

1 ∆
2
3M

1
3 ).

D.4 Proof of Theorem 4.1

We first focus on the case for β > 0. Let E1, . . . ,EN be epochs in [1,M]. If Assumption D.1 holds, by
Lemma D.4, the dynamic regret of the exponential value functions over M episodes is upper-bounded
by

M

∑
m=1
(eβV

∗,m
1 (s1) −Rm) ≤Õ (

N

∑
i=1
(c

2
3

1 ∆
1
3

Ei ∣Ei∣
2
3 + c1∣Ei∣

1
2 ))

≤Õ (c
2
3

1 ∆
1
3M

2
3 + c1N

1
2M

1
2 )

≤Õ (c
2
3

1 ∆
1
3M

2
3 ) . (44)

where the second inequality follows from Hölder’s inequality and the facts that ∑N
i=1∆Ei ≤∆ and

∑N
i=1 ∣Ei∣ ≤M , the last step holds by the bound on N from Lemma D.5.

Now, it remains to show that the base algorithms RSVI and RSQ satisfy Assumption D.1 and provide
the concrete form of ∆(m), ρ(m), c1 and c2.

• RSVI as the base algorithm: it has been shown in Lemma B.6 and (25) in the proof of
Theorem 3.1 that RSVI satisfies Assumption D.1 with the following choices:

∆(m) =H (∣eβH − 1∣BP,m + g1(β)Br,m) ,

ρ(m) = O ((∣eβH − 1∣ + g1(β))
√
H2∣S∣2∣A∣ι2/m) ,

c1 = (∣eβH − 1∣ + g1(β))
√
H2∣S∣2∣A∣ι2.

Then, by plugging in the form of ∆ and c1 in (44), and using eβH − 1 ≤ βHeβH for β > 0,
we have

M

∑
m=1
(eβV

∗,m
1 (s1) −Rm) ≤Õ (βeβHH2∣S∣ 23 ∣A∣ 13B 1

3M
2
3 ) .

Invoking the above inequality with Lemma F.1 and applying Azuma’s inequality to bound

∑M
m=1(Rm − eβV

πm,m
1 ) yield that:

D-Regret(M) ≤Õ (eβHH2∣S∣ 23 ∣A∣ 13B 1
3M

2
3 ) .
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• RSQ as the base algorithm: it has also been shown in Lemma C.4 and (41) in the proof of
Theorem 3.2 that RSQ satisfies Assumption D.1 with the following choices:

∆(m) =H (2g1(β)Br,m + (g1(β)H + ∣eβH − 1∣)BP,m)

ρ(m) = O (∣eβH − 1∣
√
H ∣S∣∣A∣ι/m) ,

c1 = O (∣eβH − 1∣
√
H ∣S∣∣A∣ι) .

Then, by plugging in the form of ∆ and c1 in (44), and using eβH − 1 ≤ βHeβH for β > 0,
we have

M

∑
m=1
(eβV

∗,m
1 (s1) −Rm) ≤Õ (βeβHH

5
3 ∣S∣ 13 ∣A∣ 13B 1

3M
2
3 ) .

Invoking the above inequality with Lemma F.1 and applying Azuma’s inequality to bound

∑M
m=1(Rm − eβV

πm,m
1 ) yield that:

D-Regret(M) ≤Õ (eβHH 5
3 ∣S∣ 13 ∣A∣ 13B 1

3M
2
3 ) .

For the case of β < 0, note that from Lemma F.1, the dynamic regret can be bounded and decomposed
as follows:

D-Regret(M) ≤ e
−βH

(−β) ∑m∈[M]
[eβ⋅V

m
1 (s

m
1 ) − eβ⋅V

∗,m
1 (sm1 )]+e

−βH

(−β) ∑m∈[M]
[eβ⋅V

πm,m
1 (sm1 ) − eβ⋅V

m
1 (s

m
1 )] .

Then, following a procedure similar to the one used for the case β > 0 and noticing that g1(β)H =
−βH ≥ 1 − eβH for β < 0, we obtain the desired result.

E Proof of Theorem 5.1

E.1 Case β > 0

Consider a stochastic k-arm and M horizons bandit environment ν, where the reward for pulling arm
j ∈ {1,2, . . . , k} is given by the scaled Bernoulli random variable Ber(pj)

Xj = {
H, with probability pj ,
0, with probability 1 − pj

where H ≥ 1 specifies the range of the reward. We let the arm i be the unique optimal arm and all the
other k − 1 arms have the same pj , that is, p1 = p2 = ⋯ = pi−1 = pi+1 = ⋯ = pk = p and pi = p+∆ for
some constants p > 0 and ∆ > 0. Define Xm

j to be the outcome of arm j (if pulled) in round m, and
Y m to be the outcome of arm actually pulled in round m.

Lemma E.1 For the Bernoulli bandit ν described above, if p = e−βH , ∆ ≤ e−βH and H ≥ log 2
β

, then
for every policy π, the regret with the entropic risk measure in ν satisfies

Regret(M) ∶=
M

∑
m=1

1

β
(log [E[exp (βXm

1 )]] − log [E[exp (βY m)]])

≥ ∑
j∈[k]/ i

E [Tj(M)]
∆(eβH − 1)

4β

Proof. By the definition of Regret(M), we have

Regret(M) =
M

∑
m=1

1

β
(log [E[exp (βXm

1 )]] − log [E[exp (βY m)]])

= ∑
j∈[k]/ i

Ti(M)
β

(log [E[exp (βX1)]] − log [E[exp (βXi)]]) (45)
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where the last step holds because of the independence among {Xm
1 }Mm=1 and the independence among

{Y m}Mm=1. Taking the expectation over M on both sides of (45), we have

E [Regret(M)] = ∑
j∈[k]/ i

E [Ti(M)]
β

(log [E[exp (βXi)]] − log [E[exp (βXj)]])

= ∑
j∈[k]/ i

E [Tj(M)]
β

log((p +∆)e
βH + (1 − p −∆)

peβH + (1 − p) )

= ∑
j∈[k]/ i

E [Tj(M)]
β

log(1 + ∆(eβH − 1)
peβH + (1 − p))

= ∑
j∈[k]/ i

E [Tj(M)]
β

log(1 + ∆(eβH − 1)
2 − e−βH )

≥ ∑
j∈[k]/ i

E [Tj(M)]
β

log(1 + ∆(eβH − 1)
2

)

≥ ∑
j∈[k]/ i

E [Tj(M)]
∆(eβH − 1)

4β

where the forth equality holds since p = e−βH , the first inequality follows from eβH ≥ 2, and the
second inequality holds since ∆ ≤ e−βH and log(1 + x) ≥ x

2
for x ∈ [0,1]. ◻

Lemma E.2 Let k > 1. For every policy π and sufficiently large M and H , there exists a k-arm
bandit instance such that

Ep⃗ [Regret(M)] >
eβH/2 − 1

β

√
Mk

64e
.

Proof. Fix a policy π. Let ∆ ∈ [0, e−βH] be some constant to be chosen later. We start with
a Bernoulli bandit where the reward of each arm is a scaled Bernoulli random variable Ber(pi)
with p⃗ ∶= (p1, . . . , pk) = (∆ + p, p, . . . , p). This environment and the policy π give rise to the
probability measure Pp⃗ on the canonical bandit model (Section 4.6 in [29]) induced by the M -round
interconnection of π and ν. Expectation under Pp⃗ will be denoted as Ep⃗. To choose the second
environment, let

i = argmin
j>1

Ep⃗ [Tj(M)] .

Since ∑k
j=1 Ep⃗ [Tj(M)] =M , it holds that

Ep⃗ [Ti(M)] ≤
M

k − 1 (46)

The second bandit is also a Bernoulli bandit where the reward of each arm is a scaled Bernoulli
random variable Ber(p′i) with p⃗′ ∶= (p′1, . . . , p′k) = (∆+p, p, . . . ,2∆+p, p, . . . , p), where specifically
p′i = 2∆ + p. Therefore, pj = p′j except at index i and the optimal arm in νp⃗ is the first arm, while in
νp⃗′ arm i is optimal. Then, Lemma E.1 and a simple calculation lead to

Ep⃗ [Regret(M)] ≥ Pp⃗(T1(M) ≤
M

2
)M∆(eβH − 1)

8β
,

Ep⃗′ [Regret(M)] > Pp⃗′(T1(M) >
M

2
)M∆(eβH − 1)

8β
.

Then, applying the Bretagnolle-Huber inequality in Lemma F.4 leads to

Ep⃗ [Regret(M)] + Ep⃗′ [Regret(M)]

>M∆(eβH − 1)
8β

(Pp⃗(T1(M) ≤
M

2
) + Pp⃗′(T1(M) >

M

2
))

≥M∆(eβH − 1)
8β

exp (−DKL(Pp⃗ ∣ Pp⃗′))
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It remains to upper-bound DKL(Pp⃗ ∣ Pp⃗′). For this, we use Lemma F.6:
DKL (Pν ∣ Pν′) =EPp⃗ [Ti(M)]DKL (Ber(pi) ∣ Ber(p′i)) (47)

=EPp⃗ [Ti(M)]DKL (p ∣ 2∆ + p))

≤EPp⃗ [Ti(M)] ⋅
4∆2

(2∆ + p)(1 − 2∆ − p)

≤ M

k − 1 ⋅
4∆2

(2∆ + p)(1 − 2∆ − p)

≤16M∆2

kp

≤16e
βHM∆2

k
where the first inequality follows from Lemma F.5, the second inequality holds by (46), the third step
follows from 1 − 2∆ − p ≥ 1

2
and k ≥ 3, and the last step holds by p = e−βH .

Substituting this into the previous expression, we find that

Ep⃗ [Regret(M)] + Ep⃗′ [Regret(M)] >
M∆(eβH − 1)

8β
exp(−16e

βHM∆2

k
)

>e
βH/2 − 1
β

√
Mk

32e

where the second inequality holds by choosing ∆ =
√
k/(16MeβH) ≤ e−βH with M sufficiently

large. This result is completed by using 2max(a, b) ≥ a + b. ◻

Lemma E.3 For every policy π and sufficiently large M and H , there exists a MDP instance with
horizon H , S ≥ 3 states and A actions such that

E [Regret(M)] >e
βH/2 − 1
β

√
MSA

64e
.

Proof. Note that the M -round k-arm bandit model described in Lemma E.2 is a special case of an
M -episode (H + 2)-horizon MDP with S states and S−1

2
actions where S ≥ 3 is odd. Let s1 be

the initial state, and all other states be absorbing regardless of actions taken. At the initial state s1,
we may choose to take action a1, a2, . . . , aS−1

2
. If aj is taken at state s1, then we transition to state

s1+2(j−1)+1 with probability pj and to state s1+2(j−1)+2 with probability 1 − pj . The reward function
satisfies rh(s1+2(j−1)+1, a) = 1, rh(s1+2(j−1)+2, a) = 0 and rh(s1, a) = 0 for all h ∈ [H + 2], a ∈ A
and j = 1, . . . , S−1

2
. ◻

Based on Lemma E.3, let us now incorporate the non-stationarity of the MDP and derive a lower
bound for the dynamic regret D-Regret(M). We will construct the non-stationary environment as a
switching-MDP. For each segment of length M0, the environment is held constant, and the regret
lower bound for each segment is O( eβH/2−1

β

√
SAM0). At the beginning of each new segment,

we uniformly sample a new action at random at the state s1 from the action space A to be the
optimal action at the state s1 for the new segment. In this case, the learning algorithm cannot use
the information it learned during its previous interactions with the environment, even if it knows the
switching structure of the environment. Therefore, the algorithm needs to learn a new (static) MDP
in each segment, which leads to a dynamic regret lower bound of

O(e
βH/2 − 1
β

L
√
SAM0) = O(

eβH/2 − 1
β

√
SAML) ,

where L is the number of segments. Every time that the optimal action at the state s1 varies, it will
cause a variation of magnitude 2∆ =

√
SA/(4M0eβH) in the transition kernel. The constraint of the

overall variation budget requires that

2∆L =
√

SA

4M0eβH
L =
√

SAL3

4MeβH
≤ B,
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which in turn requires L ≤ 4 1
3B

2
3M

1
3 e

βH
3 S−

1
3A−

1
3 . Finally, by assigning the largest possible value

to L subject to the variation budget, we obtain a dynamic regret lower bound of

O
⎛
⎝
e

2βH
3 − 1
β

S
1
3A

1
3B

1
3M

2
3
⎞
⎠
.

This completes the proof of Theorem 5.1 for the case β > 0.

E.2 Case β < 0

The proof of the base β < 0 is similar to that of the case β > 0. For β < 0, consider a stochastic k-arm
and M horizons bandit environment ν, where the reward for pulling arm j ∈ {1,2, . . . , k} is given by
the scaled Bernoulli random variable Ber(1 − pj)

Xj = {
0, with probability pj ,
H, with probability 1 − pj

where H ≥ 1 specifies the range of the reward. We let the arm i be the unique optimal arm and all the
other k − 1 arms have the same pj , that is, p1 = p2 = ⋯ = pi−1 = pi+1 = ⋯ = pk = p and pi = p+∆ for
some constants p > 0 and ∆ < 0. Define Xm

j to be the outcome of arm j (if pulled) in round m, and
Y m to be the outcome of arm actually pulled in round m.

Lemma E.4 For the Bernoulli bandit ν described above, if p = eβH and ∆ ≥ −eβH , then for every
policy π, the regret with the entropic risk measure in ν satisfies

Regret(M) ∶=
M

∑
m=1

1

β
(log [E[exp (βXm

1 )]] − log [E[exp (βY m)]])

≥ ∑
j∈[k]/ i

E [Tj(M)]
∆(e−βH − 1)

2β

Proof. Taking the expectation over M on both sides of (45), we have

E [Regret(M)] = ∑
j∈[k]/ i

E [Ti(M)]
β

(log [E[exp (βXi)]] − log [E[exp (βXj)]])

= ∑
j∈[k]/ i

E [Tj(M)]
β

log((1 − p −∆)e
βH + (p +∆)

(1 − p)eβH + p )

= ∑
j∈[k]/ i

E [Tj(M)]
β

log(1 + ∆(1 − eβH)
(1 − p)eβH + p)

≥ ∑
j∈[k]/ i

E [Tj(M)]
β

log(1 + ∆(1 − eβH)
2eβH

)

≥ ∑
j∈[k]/ i

E [Tj(M)]
∆(e−βH − 1)

2β

where the first inequality holds since p = eβH , the second inequality holds since ∆ ≤ e−βH and
log(1 + x) ≤ x for x > −1. ◻

Lemma E.5 Let k > 1. For every policy π and sufficiently large M and H , there exists a k-arm
bandit instance such that

Ep⃗ [Regret(M)] >
e−βH/2 − 1
−β

√
Mk

64e
.

Proof. The proof is similar to that of Lemma E.2 by replacing Lemma E.1 with Lemma E.4, replacing
(47) by

DKL (Pν ∣ Pν′) =EPp⃗ [Ti(M)]DKL (Ber(1 − pi) ∣ Ber(1 − p′i))
and by choosing ∆ = −

√
k/(16Me−βH) ≥ −eβH . ◻

The rest of the proof is similar to that for the case β > 0 and is thus omitted.
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F Auxiliary lemmas

Lemma F.1 For β > 0, the dynamic regret is bounded by

D-Regret(M) ≤ ∑
m∈[M]

1

β
[eβ⋅V

∗

1 (s
m
1 ) − eβ⋅V

m
1 (s

m
1 )] + ∑

m∈[M]

1

β
[eβ⋅V

m
1 (s

m
1 ) − eβ⋅V

πm,m
1 (sm1 )] ,

and for β < 0, the dynamic regret is bounded by

D-Regret(M) ≤ ∑
m∈[M]

e−βH

(−β) [e
β⋅V m

1 (s
m
1 ) − eβ⋅V

∗,m
1 (sm1 )]+ ∑

m∈[M]

e−βH

(−β) [e
β⋅V πm,m

1 (sm1 ) − eβ⋅V
m
1 (s

m
1 )] .

Proof. For β > 0, we have
D-Regret(M)
= ∑

m∈[M]
(V ∗,m1 − V πm,m

1 ) (sm1 )

= ∑
m∈[M]

(V ∗,m1 − V m
1 ) (sm1 ) + ∑

m∈[M]
(V m

1 − V πm

1 ) (sm1 )

= ∑
m∈[M]

[ 1
β
log {eβ⋅V

∗,m
1 (sm1 )} − 1

β
log {eβ⋅V

m
1 (s

m
1 )}] + ∑

m∈[M]
[ 1
β
log {eβ⋅V

m
1 (s

m
1 )} − 1

β
log{eβ⋅V

πm

1 (sm1 )}]

≤ ∑
m∈[M]

1

β
[eβ⋅V

∗,m
1 (sm1 ) − eβ⋅V

m
1 (s

m
1 )] + ∑

m∈[M]

1

β
[eβ⋅V

m
1 (s

m
1 ) − eβ⋅V

πm,m
1 (sm1 )]

where the last step holds by the 1-Lipschitzness of the function f(x) = logx for x ≥ 1.

For β < 0, we similarly have
D-Regret(M)
= ∑

m∈[M]
(V ∗,m1 − V πm,m

1 ) (sm1 )

= ∑
m∈[M]

(V ∗,m1 − V m
1 ) (sm1 ) + ∑

m∈[M]
(V m

1 − V πm

1 ) (sm1 )

= ∑
m∈[M]

[ 1

−β log {eβ⋅V
m
1 (s

m
1 )} − 1

−β log {eβ⋅V
∗,m
1 (sm1 )}]

+ ∑
m∈[M]

[ 1

−β log{eβ⋅V
πm,m
1 (sm1 )} − 1

−β log {eβ⋅V
m
1 (s

m
1 )}]

≤ ∑
m∈[M]

e−βH

(−β) [e
β⋅V m

1 (s
m
1 ) − eβ⋅V

∗,m
1 (sm1 )] + ∑

m∈[M]

e−βH

(−β) [e
β⋅V πm,m

1 (sm1 ) − eβ⋅V
m
1 (s

m
1 )]

where the last step holds by the (e−βH)-Lipschitzness of the function f(x) = logx for x ≥ eβH . ◻

Lemma F.2 (Theorem 1 in [1]) Let {Ft}∞t=0 be a filtration and {ηt}∞t=1 be a R-valued stochastic
process such that ηt is Ft-measurable for every t ≥ 0. Assume that for every t ≥ 0, conditioning
on Ft, ηt is a zero-mean and σ-subGaussian random variable with the variance proxy σ2 > 0, i.e.,
E [eληt ∣ Ft] ≤ eλ

2σ2/2 for every λ ∈ R. Let {Xt}∞t=1 be an Rd-valued stochastic process such that
Xt is Ft-measurable for every t ≥ 0. Let Y ∈ Rd×d be a deterministic and positive-definite matrix.
For every t ≥ 0, we define

Ȳt ∶= Y +
t

∑
τ=1

XτX
⊺
τ and St =

t

∑
τ=1

ητXτ .

Then, for every fixed δ ∈ (0,1), it holds with probability at least 1 − δ that

∥St∥2(Ȳt)−1 ≤ 2σ
2 log

⎛
⎜
⎝
det (Ȳt)

1/2
det(Y )−1/2

δ

⎞
⎟
⎠

for every t ≥ 0.
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Lemma F.3 (Fact 1 in [20]) The following properties hold for αi
t defined in (27):

1. 1√
t
≤ ∑i∈[t]

αi
t√
i
≤ 2√

t
for every integer t ≥ 1.

2. maxi∈[t] α
i
t ≤ 2H

t
and ∑i∈[t] (αi

t)
2 ≤ 2H

t
for every integer t ≥ 1.

3. ∑∞t=i αi
t = 1 + 1

H
for every integer i ≥ 1.

4. ∑i∈[t] α
i
t = 1 and α0

t = 0 for every integer t ≥ 1, and ∑i∈[t] α
i
t = 0 and α0

t = 1 for t = 0.

Lemma F.4 (Lemma 14.2 in [29]) Let P,Q be probability measures on the same measurable space
(Ω,F), and let A ∈ F be an arbitrary event. Then,

P (A) +Q(Ac) ≥ 1

2
exp (−DKL(P ∣ Q)) ,

where DKL denotes the KL divergence and Ac = Ω/ A is the complement of A.

Lemma F.5 (Lemma 14 in [19]) Let p, p′ ∈ (0,1) be such that p > p′. We have

DKL (Ber (p′) ∥Ber(p)) ≤
(p−p′)2

p(1−p)

Lemma F.6 (Divergence decomposition, Lemma 15.1 in [29]) Let ν = (P1, . . . , Pk) be the re-
ward distributions associated with one k-armed bandit, and let ν′ = (P ′1, . . . , P ′k) be the reward
distributions associated with another k-armed bandit. Fix some policy π and let Pν = Pνπ and
Pν′ = Pν′π be the probability measures on the canonical bandit model (Section 4.6 in [29]) induced
by the M -round interconnection of π and ν (respectively, π and ν′ ). Then,

DKL (Pν ,Pν′) =
k

∑
i=1

Eν [Ti(M)]DKL (Pi, P
′
i )

37


	Introduction
	Related work

	Problem formulation
	Episodic MDP and risk-sensitive objective
	Exponential Bellman equation
	Non-stationarity and variation budget
	Performance metrics

	Restart algorithms with the knowledge of variation budget
	Periodically restarted risk-sensitive model-based method
	Periodically restarted risk-sensitive Q-learning
	Theoretical results and discussions

	Adaptive algorithm without the knowledge of variation budget
	Risk-sensitive non-stationary detection
	Multi-scale ALG (MALG) and Non-stationarity Tests
	Theoretical results and discussions

	Lower bound
	Risk Control Under the Non-stationarity
	Conclusion and future work
	Notations
	Proof of Theorem 3.1
	Preliminaries
	Model prediction errors
	Value difference bounds
	Proof of Theorem 3.1

	Proof of Theorem 3.2 
	Preliminaries
	Value difference bounds
	Proof of Theorem 3.2

	Proof of Theorem 4.1
	Multi-scale ALG Initialization
	An illustrative example
	Preliminaries
	Proof of Theorem 4.1

	Proof of Theorem 5.1
	Case Lg
	Case Lg

	Auxiliary lemmas

