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On the Absence of Spurious Local Trajectories
in Time-Varying Nonconvex Optimization
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Abstraci—In this article, we study the landscape of an
online nonconvex optimization problem, for which the in-
put data vary over time and the solution is a trajectory
rather than a single point. To understand the complexity
of finding a global solution of this problem, we introduce
the notion of spurious (i.e., nonglobal) local trajectory as
a generalization to the notion of spurious local solution
in nonconvex (time-invariant) optimization. We develop an
ordinary differential equation (ODE) associated with a time-
varying nonlinear dynamical system which, at limit, char-
acterizes the spurious local solutions of the time-varying
optimization problem. We prove that the absence of spu-
rious local trajectory is closely related to the transient
behavior of the developed system. In particular, we show
that if the problem is time-varying, the data variation may
force all of the ODE trajectories initialized at arbitrary local
minima at the initial time to gradually converge to the global
solution trajectory. We study the Jacobian of the dynamical
system along a local minimum trajectory and show how its
eigenvalues are manipulated by the natural data variation
in the problem, which may consequently trigger escaping
poor local minima over time.

Index Terms—Nonlinear optimization, nonlinear sys-
tems, time-varying optimization.

[. INTRODUCTION

EQUENTIAL decision-making with time-varying data is
S at the core of most of today’s problems. For example, the
optimal power flow (OPF) problem in the electrical grid should
be solved every 5 min in order to match the supply of elec-
tricity with a demand profile that changes over time [2]. Other
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examples include the training of dynamic neural networks [3],
dynamic matrix recovery [4], [5], time-varying multiarmed ban-
dit problem [6], robot navigation and obstacle avoidance [7], and
many other applications [8]. Indeed, most of these problems are
large scale and should be solved in real time, which strongly
motivates the need for practical algorithms in such optimization
frameworks.

A recent line of work has shown that a surprisingly large
class of data-driven and nonconvex optimization problems—
including matrix completion/sensing, phase retrieval, and dic-
tionary learning, robust principal component analysis—has a be-
nign landscape, i.e., every local solution is also global [9]-[12].!
A local solution that is not globally optimal is called spurious. At
the crux of the results on the absence of spurious local minima
is the assumption on the static and time-invariant nature of the
optimization. Yet, in practice, many real-world and data-driven
problems are time-varying and require online optimization. This
observation naturally gives rise to the following question.

Would simple local-search algorithms escape spurious local
minima in online nonconvex optimization, similar to their time-
invariant counterparts?

In this article, we attempt to address this question by de-
veloping a control-theoretic framework for analyzing the land-
scape of online and time-varying optimization. In particular, we
demonstrate that even if a time-varying optimization may have
undesired pointwise local minima at almost all times, the varia-
tion of its landscape over time would enable simple local-search
algorithms to escape these spurious local minima. Inspired by
this observation, this article provides a new machinery to analyze
the global landscape of online decision-making problems by
drawing tools from optimization and control theory.

We consider a class of nonconvex and online optimization
problems, where the input data vary over time. First, we intro-
duce the notion of spurious local trajectory as a generalization
to the pointwise spurious local solutions. Roughly speaking, a
solution trajectory is called spurious if it does not belong to
the region of attraction of a global solution of the problem (see
Section III for a formal definition). We show that a time-varying
optimization can have pointwise spurious local minima at every
time step, and yet, it can be free of spurious local trajectories.
By building upon this notion, we consider a general class of
nonconvex optimization problems and model their local trajec-
tories via an ordinary differential equation (ODE) representing
a time-varying nonlinear dynamical system. We show that the
absence of the spurious local trajectories in this time-varying

1A local solution is a point that satisfies the first-order optimality conditions.
Moreover, a global solution is a point that has the best overall objective value;
see Sections III and V for more details.
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optimization is equivalent to the convergence of all solutions
in its corresponding ODE. Based on this equivalence, we an-
alyze different classes of time-varying optimization problems
and present sufficient conditions under which, despite possi-
bly having pointwise spurious local minima at all times, the
time-varying problem is free of spurious local trajectories. This
implies that the time-varying nature of the problem is essential
for the absence of spurious local trajectories. Finally, we analyze
the Jacobian of the ODE along a local minimum trajectory
and show how its eigenvalues are manipulated by the data
variation.

A. Related Works

Benign Landscape: Nonconvexity is inherent to many prob-
lems in machine learning; from the classical compressive sens-
ing and matrix completion/sensing [13]-[15] to the more recent
problems on the training of deep neural networks [16], they often
possess nonconvex landscapes. Reminiscent from the classical
complexity theory, this nonconvexity is perceived to be the main
contributor to the intractability of these problems. In many (al-
beitnot all) cases, this intractability implies that in the worst-case
instances of the problem, spurious local minima exist and there
is no efficient algorithm capable of escaping them. However, a
lingering question remains unanswered: Are these worst-case
instances common in practice or do they correspond to some
pathological or rare cases?

Answering this question has been the subject of many recent
studies. In particular, it has been shown that nearly isotropic
classes of problems in matrix completion/sensing [9], [10], [17],
robust principle component analysis [12], [18], and dictionary
recovery [19] have benign landscape, implying that they are free
of spurious local minima. It has also been proven recently in [20]
that under some conditions, the stochastic gradient descent may
escape the sharp local minima in the landscape. At the core of
the aforementioned results is the assumption on the static and
time-invariant nature of the landscape. In contrast, many real-
world problems should be solved sequentially over time with
time-varying input data. For instance, in the optimal power flow
problem, the electricity consumption of the consumers changes
hourly [21], [22]. Therefore, it is natural to study the landscape of
such time-varying nonconvex optimization problems, by taking
into account their dynamic nature.

Time-Varying Dynamical Systems: Recently, there has been
a growing interest in analyzing the performance of numerical
algorithms from a control-theoretical perspective [23]-[28].
Roughly speaking, the general idea behind these approaches
is to analyze the convergence of a specific algorithm by first
modeling its limiting behavior as a specific ODE that describes
the evolution of the algorithm, and then studying its stability
properties. As a natural extension, one would generalize this
approach to a general class of time-varying optimization by
modeling its Karush—-Kuhn-Tucker (KKT) points as a general
nonautonomous ODE corresponding to a time-varying dynam-
ical system. However, the stability analysis of time-varying
dynamical systems is highly convoluted in the general nonlinear
settings. We note that several necessary and sufficient conditions
for the stability of linear time-varying systems were proposed
in [29]. A generalized time-varying Lyapunov function was pro-
posed in [30] and has been applied in [31] to study the stability of
an averaged system. Furthermore, slowly time-varying systems
are investigated in [32].

[I. CASE STUDIES

In this section, we present empirical studies on the dynamic
landscapes of two problems in power systems and machine
learning: Optimal power flow and dynamic matrix recovery.

A. Electrical Power Systems

In the optimal power flow problem, the goal is to match the
supply of electricity with a time-varying demand profile, while
satisfying the network, physical, and technological constraints.
In practice, the problem is solved sequentially over time with
the constraint that at every time step, the solution cannot be
significantly different from the one obtained in the previous time
step due to the so-called ramping constraints of the generators.
We consider the IEEE 9-bus system [33] and initialize the system
from the global solution, as well as three different spurious
local solutions. We then change the load over time based on
the California average load profile for the month of January
2019 [Fig. 1(a)]. The optimal power flow problem is then solved
sequentially using local search every 15 min for the period of
24 h, while taking into account the temporal couplings between
solutions via the ramping constraints. The trajectories of the
solutions for the optimal power flow problem with different
initial points appear in Fig. 1(b). In this figure, the solid blue line
represents the cost obtained by the semidefinite programming
(SDP) relaxation of the optimal power flow [34]. This curve
is a lower bound to the globally optimal cost and serves as a
certificate of the global optimality whenever it touches other
trajectories.

The gray circles in these plots are some of the local solutions
that were obtained via a Monte Carlo simulation. Based on
Fig. 1(b), indeed there exist multiple local solutions at almost all
time step (some of them emerge over time). However, surpris-
ingly, the trajectories of the local solutions that are initialized
at different points all converge toward the global solution. This
implies that there is no spurious local trajectory, and, therefore,
local search methods are able to find global minima of the
optimal power flow problem at future times even when they
start from poor local minima at the initial time.

B. Dynamic Matrix Recovery

In the dynamic matrix recovery problem, the goal is to recover
a time-varying low-rank matrix, based on a limited number of
linear observations [4], [5]. This problem can be formulated as
follows:

. - ) TN 7. 2
ot D (AL XXT) —di(t) (1)

=1

where (-, -) is the inner product operator, { A; } ; are the sensing
matrices, and d(t) is the time-varying measurements vector.
Equivalently, (1) can be rewritten as

m

inf g €
XeRnxr ecR™ 4 ]
i=

s.t. (A, XXT) —e; =di(t),i=1,....,m. (2

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 28,2024 at 18:04:12 UTC from |IEEE Xplore. Restrictions apply.



82 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 1, JANUARY 2023

x10

26

Power demand
o
=

o

0 4 8 12 16 20 24
Time (hr)

(a)

Fig. 1.
flow.

Assuming that d(t) does not change over time, it is well known
that the above optimization problem has no spurious local min-
ima if the sensing matrices {4;}7", satisfy a certain restricted
isometry property (RIP). In particular, it is said that the sensing
matrices { A; }1, satisfy RIP with a constant § € [0, 1) if the in-
equality (1-0)[X[3 < £ S0 (4, X) < (1+8)| X% is
satisfied for every X € R"™*" whose rank is upper bounded by
2r (]| X ||  is the Frobenious norm of the matrix X). Recently, the
authors in[11] showed that if » = 1, an RIP constant of § < 1/2
is both necessary and sufficient for the benign landscape of the
time-invariant matrix recovery problem.
Consider the sensing matrices

1o o
. {0 é]’ e 0]
_ 1 00
Az=| 1 Pl A= Oﬁ] 3)
V2 2
with  the time-invariant —measurement vector d =

[1 0 0 O}T and r =1. The article [11] proved that
the RIP constant for the above sensing matrices is equal to
1/2. This implies that the matrix recovery problem with the
aforementioned sensing matrices is prone to having spurious
local minima. In fact, the authors in [11] showed that the

above problem has one global solution at Z = [1 O}T and
one spurious local solution at X = [0,1/v/2] T Now, consider
the time-varying version of the above instance, where the
measurement vector changes over time, as in
(0.8+0.2cost)? + (0.2sint)?
v/3(0.25in#)(0.8 + 0.2 cos t)
0
¥3(0.2sint)?

d(t) =

It is easy to see that Z = [0.8 +0.2cost 0.2 sint]T is the
trajectory of the globally optimal solution to the defined dynamic
matrix recovery problem. Moreover, using a gradient descent

2[Online]. Available: http://www.caiso.com
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Case study in power systems.? (a) California average load profile for January 2019. (b) Solution trajectories of time-varying optimal power

algorithm initialized at the spurious local solution at time ¢ = 0,
we solve (2) sequentially over time with an appropriate regular-
ization (to be defined later). Fig. 2(a) and (b) shows that, despite
the fact that the problem has a spurious local minimum att = 0
and future times, its local trajectory gradually converges to the
global one.

[Il. NOTION OF SPURIOUS LOCAL TRAJECTORY

Inspired by the above case studies, we consider the effect
of the variation in the input data on the landscape of the op-
timization problem. We focus on the following time-varying
nonconvex optimization:

inf  f(z(t),1) st hi(z(t)) = di(t), i = 1,...

4
z(t)eRn m @

where the objective function f(z(t),t) and the right-hand side
of the equality constraints vary over time ¢ € [0,7]. We as-
sume that f:R™ x [0,7] — R is a continuously differen-
tiable function. Moreover, h; : R® — Randd; : [0,7] — R
fort = 1,..., maretwice continuously differentiable functions,
and that 7" > 0 is a finite time horizon. Moreover, we assume
that f is uniformly bounded from below (i.e., f(x(t),t) > M
for some constant M) and that the problem is feasible for all
t € [0,T]. The objective function f(z,¢) may be nonconvex
in z and the constraint function h(x) = (hy(z),..., hp(z))
may be nonlinear in z. Note that, the dynamic matrix recovery
problem (2) is a special case of (4).

Remark 1: Inequality constraints can also be included in (4)
through a reformulation technique. In particular, suppose that (4)
includes a set of inequality constraints g;(z) < v;(¢t) for j =
1, ..., 1. Then, one can reformulate them as equality constraints
through the following procedure.

1) Rewrite the inequality constraints by introducing a slack
variable s € R!, as in

95(x(t)) + ;) = vi(1), = 1,..., L.
2) Augment the objective function with a penalty p(s(t)) =

P ACHON
Here, p;(s;(t)) are nonsmooth loss functions for an exact
reformulation. Furthermore, they can be relaxed to continuously
differentiable loss functions at the expense of incurring some
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(controllable) approximation errors; see [35], [36]. This implies
that the previously introduced optimal power flow problem can
be reformulated as (4).

In practice, one can only hope to sequentially solve this
problem at discrete times 0 =ty <t; <ty <...<ty=T.
However, notice that (4) is unregularized. In particular, depend-
ing on the properties of the objective function, an arbitrary
solution to (4) at time ¢, can be arbitrarily far from that of (4)
at time t;_;. However—as elucidated in our case study on
the optimal power flow problem—it is neither practical nor
realistic to have solutions that change abruptly over time in many
real-world problems. One way to circumvent this issue is to
regularize the problem at time ¢;; by penalizing the deviation
of its solution from the one obtained at time ¢j. Precisely, we
employ a quadratic proximal regularization as is done in online
learning [37].

Definition 1: Given evenly spaced-out time steps 0 =ty <
t1 <ty <...<ty =T for some integer N, a sequence
o, T1,%2,...,2N 1s said to be a discrete local trajectory of
the time-varying optimization (4) if the following holds.

1) zq is alocal solution to the time-varying optimization (4)
at time to = 0.

2) Fork=0,1,2,...,N — 1, 2441 is local solution to the
regularized problem

. z—xp|?
infoern f(2,th11) + M )
S.t. hi(fl]):di(thrl),iZl,...,m.

Above, a > 0 is a fixed regularization parameter and || - ||
denotes the Euclidian norm.

Note that, in the above definition, the term local solution
refers to any feasible point that satisfies the KKT conditions
for (5). A natural approach to characterizing the global landscape
of (4) is to analyze discrete local trajectories of the regularized
problem (5). However, notice that the nonconvexity of (5) may
lead to bifurcations in discrete local trajectories. In particular,
given a local solution zj, the regularized problem (5) may

possess two local solutions 551(@1+)1 and xgi)l, each resulting

Objective value

(b)

Case study in matrix recovery. (a) Trajectories of local and global solutions over time. (b) Objective value of the local trajectory over time

in a different discrete local trajectory.® The nonuniqueness of
the discrete local trajectories due to the bifurcation will make
the analysis inconclusive. This is because the next solution of the
problem, given the current solution, is not well defined and due
to the number of possibilities at each step, the solution trajectory
is not unique and can take an exponential number of possibilities
depending on the settings of the numerical algorithm (the choice
of descent directions and step sizes). However, in what follows,
we show that such bifurcations disappear in the ideal scenario,
where the regularized problem can be sampled arbitrarily fast,
or equivalently, as we increase [V to infinity. In particular, given
a fixed initial local solution z(, we show that any discrete local
trajectory starting from x( converges uniformly to the unique
solution to a well-defined ODE that is initialized at x. By
building upon this result, we introduce the notion of spurious
local trajectory as a generalization to the notion of spurious local
minima.

Given an initial local solution x, consider the following initial
value problem:

i = —én(z,t) + 0(x)d (6a)
z(0) = zo (6b)
where
n(z,t) = [I-J(@) (J(@)T(x)") T (z)]
X Vi f(z,t) (7a)
0(z) = J(x) (T ()T (x)")". (7b)

Above, J(x) denotes the Jacobian of the left-hand side of
the constraints h(x) = [h1(z),. .., hn(z)]" and d(t) denotes
the right-hand side of the constraints, that is to say d(t) =
[d1(t),...,dm(t)]". The term 6(x)d captures the effect of data
variation in the dynamics, and the function 7(z, t) can be inter-

preted as the orthogonal projection of the gradient V. f (z, ¢) on
the Kernel of 7 (z)".

3For example, there exist two discrete trajectories starting at £y = 0 and at
time to = O for the time-varying objective function f(z,t) := 22(T/2 — t).
Indeed, the discrete trajectory stays at xy, = 0 for ¢, < 7'/2 and then, due to
the regularization, it bifurcates into two separate discrete trajectories.
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Later, we will show that the solution to (6) exists, it is unique,
and can be used to fully characterize the limiting behavior of
every discrete local trajectory of the time-varying problem (4).

Assumption 1 (Uniform boundedness): There exist constants
R; > 0 and Ry > 0, such that, for any discrete local trajectory
X0, T1, X2, . .., the parameter ||| and the objective function
of (5) at =), are upper bounded by R; and R, respectively, for
every k € {0,1,2,...,N}.

Assumption 1 is a common assumption made in the optimiza-
tion literature [38], [39], and can be guaranteed by requiring the
feasible region to be compact. This condition can also be explic-
itly imposed via an inequality constraint (such as box or norm
constraint). According to Remark 1, such inequality constraint
can be moved to the objective function via an (exact/inexact)
penalty method. Moreover, the uniform boundedness assump-
tion on the variables is crucial from a practical standpoint. For
instance, in the time-varying OPF, the variables, i.e., active
and reactive power, voltage magnitudes, and their angles, are
restricted to bounded sets implied by the laws of physics and
technological constraints on physical devices. It is worth noting
that the main results of the article do not depend on the explicit
values of the constants R, and Rs.

Assumption 2 (Nonsingularity): There exists a constant ¢ >
0, such that, for any discrete local trajectory g, z1, 2, ..., it
holds that o (J(zx)) = ¢ for all k€ {0,1,2,...}, where
Omin denotes the minimal singular value.

Assumption 2 implies that linear independence constraint
qualification (LICQ) holds at every point of a discrete local
trajectory, which in turn implies that the constraints are nonde-
generate. The LICQ is a simple sufficient condition to guarantee
the well definedness of the KKT points [40], and is the most stan-
dard assumption in the optimization literature [36], [41], [42].
Indeed, most of the off-the-shelf solvers, such as IPOPT [43],
only converge to solutions that automatically satisfy LICQ.

Theorem 1 (Existence and uniqueness): Let Assumptions 1
and 2 hold. Suppose that x( is an arbitrary local solution to the
time-varying optimization (4) at £ = 0. Then, the ODE (6) with
the initial value condition x(0) = 2y has a unique continuously
differentiable solution z : [0, 7] — R™.

Theorem 1 states that the proposed ODE is well defined and
has a unique solution, provided that its initial value is a local
solution, i.e., it satisfies the KKT conditions for the original
time-varying optimization problem. As will be shown later, this
assumption is crucial and cannot be relaxed in general. Given the
unique solution to the proposed ODE, the next theorem precisely
characterizes its relationship to any discrete local trajectory
of (5) starting at .

Theorem 2 (Uniform convergence): Let Assumption 1 and
Assumption 2 hold. If x( is a local solution to the time-varying
optimization (4) at £ = 0, then any discrete local trajectory
initialized at .y converges toward the solution  : [0, 7] — R"
with 2(0) = x, in the sense that

lim su T — x(t =0 8
Jmsup o — (6] ®)

where NNV is the number of points in the discrete local trajectories,
and 0 =ty <t1 <te <...<ty =T are evenly spaced-out
time steps.

Sketch of the Proofs: The proofs for Theorems 1 and 2 are quite
involved and hence, they are deferred to the next section. In what
follows, we provide the high-level ideas of our developed proof
techniques. Note that, most of the classical results on ordinary

differential equations, namely, the Picard-Lindelof theorem
[44, Th. 3.1], the Cauchy—Peano theorem [44, Th. 1.2], and
the Carathéodory theorem [44, Th. 1.1], can only guarantee the
existence of a solution in a local region, i.e., a neighborhood
[0, 7], where T < T is potentially very small. On the other hand,
the global version of Picard—Lindel6f theorem only holds under
a restrictive Lipschitz condition, which is not satisfied for (6).
Instead, we take a different approach to prove the existence and
uniqueness of the solution to (6) (Theorem 1). The proof consists
of three general steps as follows.

1) By building upon the Arzela—Ascoli theorem, we show
that, among all the discrete local trajectories that are
initialized at x(, there exists at least one that is uniformly
convergent to a continuously differentiable function y :
[0,T] — R™.

2) By fully characterizing the KKT points of (5), we prove
that y is a solution to (6) when N — +o0.

3) The uniqueness of the solution is then proved by showing
the existence of an open and connected set D, such that the
proposed ODE is locally Lipschitz continuous on D and
(y(t),t) € Dforeveryt € [0, T]. This, together with [44,
Th. 2.2], completes the proof of Theorem 1.

Given the existence and uniqueness of the solution to (6),
we show the correctness of Theorem 2 by making an extensive
use of the so-called backward Euler method [45]. In particular,
we show that all of the discrete local trajectories converge to
a discretized version of the solution to (6) that is obtained by
the backward Euler method. This, together with the existing
convergence results on the backward Euler iterations, completes
the proof of Theorem 2. O

Now that we have established the connection between the
discrete local trajectories and their continuous limit, we naturally
propose the following definition.

Definition 2: A continuously differentiable function z(¢) :
[0,7] — R™ is said to be a continuous local trajectory of the
time-varying optimization (4) if the following holds.

1) z(0) is a local solution to the time-varying optimization
(4) attime t = 0.

2) z(t) is a solution to (6).

The next definition will be at the core of our subsequent
definition of spurious local trajectories.

Definition 3: The region of attraction of a local minimum
x*(t) of f(-,t) in the feasible set F(t) = {x € R" : h(x) =
d(t)} at a given time ¢ is defined as

{xo € F(t)| lim &(s) = x*(t) where

5§—00

() _ Lo i(s)8) + 0(E(s))d(t) and F(0) = xo} .
ds @

Intuitively, the basin of attraction for a local solution z*(t)
is defined as the set of initial points for which an alternative
(time-invariant) ODE has a solution whose limit corresponds to
a*(t) (for fixed t). This alternative ODE is akin to the classical
Riemannian gradient flow, which is well studied in the literature
with rigorous convergence results [46]-[48]. We next introduce
the central notion in this article.

Definition 4: A continuous local trajectory z(¢) is said to be
“spurious” if for all ' < T, there exists a time ¢ € [T, T'], such
that 2(t) does not belong to the region of attraction of a global
solution of f(-,t). Accordingly, the time-varying optimization
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Example of a time-varying optimization. (a) Graph of a time-varying optimization inf ,.g f(z, t) showing that the final state of the trajectory

belongs to the region of attraction of the global minimum. (b) Graph of the same time-varying optimization inf ,cr f(x,t) from above showing that
the trajectory can never stay in a neighborhood of the global minimum of arbitrarily small size.

problem (4) is said to have no spurious local trajectories, if, when
initialized at alocal solution, any continuous local trajectory x(t)
belongs to the region of attraction of a global solution of f(-, )
at all times ¢ € [T, T'] for some constant 7' < 7.

So far, we have taken the time horizon 71" to be finite. However,
the above definition naturally applies to problems with an infinite
time horizon 7' = +4-o00. In Theorem 3, we will provide a suffi-
cient condition under which the above nonspurious trajectory
property holds for a general objective function with a damping
sinusoidal time-varying perturbation.

It may be speculated that a spurious local trajectory could
have been simply defined as a trajectory that does not converge
toward a global solution. To understand why the latter definition
is not meaningful, notice that both discrete and continuous
local trajectories are defined with respect to the regularized
problem (5), as opposed to (4). The regularization term acts
as an inertia in the continuous local trajectory, forcing it to “lag
behind” the global solution when it changes rapidly over time.
Therefore, under this alternative definition, all trajectories would
be considered spurious. This would be true even for the trajectory
initialized at the global minimum. See Fig. 3(a) and (b) for an
illustration of this phenomenon.

The notion introduced in Definition 4, while it deals with con-
tinuous local trajectories, naturally has implications for discrete
local trajectories. With sufficiently small time steps, the discrete
trajectory will eventually converge to the region of attraction of
a global solution if the corresponding continuous trajectory is
not spurious.

IV. CONDITIONS FOR THE ABSENCE OF SPURIOUS LOCAL
TRAJECTORIES

In this section, we analyze the role of data variation on the
behavior of the solution trajectories. Observe that without data
variation, strict spurious local minima cannot not be escaped.
This is a consequence of classical results on the local stability
of time-invariant ODEs (see for instance [49, Corollary 10]). In
contrast, we show that data variation can enable escaping spuri-
ous local solutions over time. In particular, we prove that even a
simple periodic variation in the data can induce continuous local
trajectories to escape nonglobal minima and eventually track the
global minima.

To better illustrate the main idea, we start with a class of
unidimensional time-varying problems, and provide sufficient

conditions for the absence of spurious local trajectories. Then,
we extend our results to a general class of multidimensional
problems. Consider the function

inf f(z,t) = g(z — Bsin(t)) ©

where g : R — R is continuously twice differentiable and
£ > 0 models the variation of the data over time. Only the
right-hand side varies over time, and, therefore, this problem
fits well in our introduced framework. We assume that g(-)
admits only three stationary points ¢'(y1) = ¢'(y2) = ¢'(y3)
with y; < y2 < y3. We assume also that y; and ys are local
minima, such that g(y1) > ¢(ys), while ys is a local maximum.
Finally, we assume that g is coercive (its limit at +c0 is +00).
Thus, its global infimum is reached in ys3.

The motivation behind studying this class of functions f(-) is
as follows. Since g(y) has a global minimum as well as a spurious
solution, when it is minimized by a gradient descent algorithm
initialized at the spurious solution, it will become stuck there.
This means that using gradient descent for such function is
inefficient. However, one can oscillate the function to arrive at
the time-varying function f(z, t) and then study it in the context
of online optimization. The following result identifies sufficient
conditions for the absence of spurious local trajectories, which
implies that if o and 3 are selected appropriately, gradient
descent will always find the global solution.

Proposition 1: 1f a,, f > 0 are such that

D af = C :=maxy, <y<ys; 9 (V).
2) Imy,me ER :my < yy < mgandg'(mq)

= ¢'(m2) = —ap,

3) —C/a(ty —t1) — B(sin(ta) — sin(t1)) +my = mo,
where 0<t; <ty satisfy cos(t1) = cos(t2)
=—C/(aB),

then the time-varying problem (9) has no spurious local
trajectories for all time horizon T' € [27, +00).

Proof: A continuous local trajectory x : [0,7] — R satis-
fies

o0) Sys, b= =Vef(a,1) (10)

which, after the change of variable y := x — S sin(t), reads

1

y(0) <ws, 9= —ag’(y) — B cos(t). (11)
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1. af > C := —255/256 + 259v/201/768 — \/2013/1728

2. —27a%3% + 6885/128a3 + 61009/256 = 0

3. —%[2%—2arcms(—{f’—}i)]+...

ap

259 1 48960-4915208 (102 _ 2k
2 192 cos |:3 arccos ( 132608 259) 3 +.
o /259 1, 48960-4915208 /192 _ 2kym
24/ g3 cos [3 AICCos ( 132608 259) 3 ] 20

(a)

—[3sin [27\' — arccos (7%)] + Bsin [arccos (—3)] +...

fx,t)

2 7
x: variable 4

(©)

Fig. 4.

[ : variation of data
- = n n w w B »
o (4] o (&2 o (50 o (5]

3

o

o

0.2 0.4 0.6 0.8 1
« :regularizer

(b)

x: variable 4

(©)

Analysis of Example 1. (a) Inequalities in function of «, 3 guaranteeing absence of spurious trajectories. (b) Sufficient condition in blue

in function of «, 8 for absence of spurious trajectories. (c) Nonspurious trajectory for « = 0.4 and 8 = 10. (d) Spurious trajectory for « = 0.2 and

B =5.

We first show by contradiction that there exists ¢ € [0, 2], such
thaty(t) > mo. Assumethaty(t) < mgforallt € [0, 27]. Then,
for all ¢ € [0, 27], it holds that

1

y=—=9'(y) - Beos(t) > —g —Beos(t).  (12)

Thus, we have

O(tg - tl) — ,B(Sin(tz) - Sin(tl)) + y(tl). (13)

y(tz) = ——
We next show by contradiction that y(t1) > my. Assume that
y(t1) < mq. Thus, y(t1) < mp <y <y(0). Let t3 denote
the maximal element of the compact set [0,t1] Ny~ (my),
where 3y~ 1(b) .= {a € R|y(a) =b}. Thus, y(t) < y(t3)
for all ¢ € [ts,t1]. As a result, y/(¢3) < 0. Together with
y'(t3) = —1/ag'(my) — B cos(ts) = B(1 — cos(ts)), this
implies that ¢35 = 0 or t3 = 27. This is in contradiction with
0<ts <ty <.

Now that we have proven that y(¢1) > mq, (13) implies
that y(t2) > mo. This is a contradiction. Therefore there exists
t € [0, 27], such that y(¢) > mq. Using the same argument as
in the previous paragraph, we obtain y(27) > ms. As a re-
sult, (27) = y(2m) — Bsin(27) > my as well. Finally, using
standard arguments in Lyapunov theory,* there exists T < T,
such that z(t) belongs to the region of attraction of ys for all
tel[T,T].

We highlight the implications of the above proposition
through a numerical example.

Example 1: Consider the objective function f(x,t) := g(z —
Bsin(t)) where

g(y) == 1/4y* +1/8y> — 2y* — 3/2y + 8. (14)

The time-varying objective f(z,t) has the following stationary
points: It admits a spurious local minimum at —2 + §sin(t), a
local maximum at —3/8 + Ssin(t), and a global minimum at
2 + Bsin(t). The three sufficient conditions of Proposition 1 can
be brought to bear on this example. They yield three inequalities,
as shown in Fig. 4(a), whose feasible region is represented in
Fig. 4(b). Taking a point in that feasible region, we confirm
numerically in Fig. 4(c) that a trajectory initialized at a local
minimum of f(-,0) winds up in the region of attraction of the
global solution to f(-,7") at the final time 7" = 2. In contrast,
taking a point outside the feasible region, we observe in Fig. 4(d)
that a trajectory initialized at a local minimum of f(-,0) does
not endsup in the region of attraction of the global solution to

We make a few remarks regarding Fig. 4(a). Note that, k;
and ko are integers in {0,1,2}, such that k; minimizes the
line it appears in, and ko minimizes the line it appears in,

“4Details can be found in the first paragraph of page 24 on online manuscript.
Available: https://arxiv.org/pdf/1905.09937v1.pdf

SIn order to increase visibility, a maximal threshold is used on the objective
function f(z,t) in Fig. 4(c) and(d) (hence the flat parts). For the same reason,
a nonlinear scaling is used. Precisely, (z,t) — f(x + (8 — 1) sin(¢),t) and
t — x(t) — (B8 — 1) sin(¢) are represented in the figures. This explains why
2(t) appears to decrease for small 0 < ¢ < 27 in Fig. 4(c).
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while not being equal to k. These numbers come from Viete’s
solution to a cubic equation [50]. Furthermore, the second in-
equality corresponds to minus the discriminant of a fourth-order
polynomial.

Next, we will extend the aforementioned result to a general
class of multidimensional optimization problems. The goal is
to show that certain nonglobal local solutions of an arbitrary
time-invariant function g(z) that cannot be escaped using de-
terministic local search methods can indeed be escaped via the
conversion of the problem to a time-varying function f(x, t), for
which there is no spurious trajectory. Consider the time-varying
optimization problem

inf f(xz,t) := hﬁgf g(x — Be M sin(wt)u) (15)
reR™

zeR™

where g : R” — R is continuously twice differentiable, co-
ercive (its limit as ||y|| — +oo is +00). The amplitude 5 > 0
and the pulsation w > 0 model the sinusoidal variation of data
over time with a damping factor of A > 0. The variation occurs
along a direction u € R™ of norm 1. Let {y;};cz denote the
set of spurious local minima of g(x). Moreover, let B(a,r)
(respectively, S(a,r)) denote the Euclidian ball (respectively,
sphere) in R™ centered at a and of radius 7. Given a fixed R > 0,
we define the following constants

Cq = ma., \Y
1 yE,UZB();i’R) Vgl
Cy:= min (Vg(y; — Rd),d). (16)
de S(0,1)
1e€T

These constants enable us to control fluctuations of g(x) in the
vicinity of its local minima. A small constant C; corresponds to
spurious local minima that tend to be flat, while large values are
associated with local minima that are sharper [51, Metric 2.1].
For the sake of clarity, we assume that g(z) has no saddle points
and local maxima outside of U;c7 B(y;, R) (for more on this, see
Remark 2). Notice that C; > C5 due to the Cauchy—Schwarz
inequality. Theorem 3 below shows that if C is not too large,
then one can escape spurious local minima, and if C5 is not too
small, then one will never return to the vicinity of any spurious
local minima after some time.

Theorem  3: If  2aw(Be /() _R)/r > C; and
afe *Re/(Crtabw) /32172 < Oy, then the time-varying
optimization (15) has no spurious trajectories.

Proof: First, we show that the spurious local minimum is
initially escaped. A continuous local trajectory z(t) satisfies

) = VLS00 (7

y(t) == a(t) -

2(0) € {yi}ier,

which, after the of wvariables

Be* sin(wt)u, reads

change

Y (t) = —Vgly(t)) fa — Be ™ [~Asin(wt) +wcos(wt)]u
y(0) € {yi}ier (18)
We first show by contradiction that there exists some time ¢ €

[0,T7, such that ||y(¢t) — y(0)|] > R > 0. Assume that ||y(¢) —
y(0)|| < Rforall ¢t > 0. Then, for all ¢ > 0, it holds that

(¥ (t), u)
(=Vg(y(t))/a — Be M[—rsin(wt) + w cos(wt)]u, u)
= —(Vg(y(t),u)/a — e [—Asin(wt) + w cos(wt)] (u, u)
< Valy@)ll /e = Be™ [~ sin(wt) + w cos(wt)]
< A{C) — aBe M [—rsin(wt) + wcos(wt)]}/a
from which we deduce that

it~ 0 = { [ t Vdsu) = | {4/ () upds

0

19)

< [C1t — aBe M sin(wt)] /. (20)

Our assumption that 2aw(fe*™/(29) — R) /7 > C; implies
that the upper bound in (20) is negative when t = 7/(2w). Using
the Cauchy—Schwarz inequality, we then obtain

ly(m/(2w)) = y(0)]| = Ky(7/(2w)) — y(0),w)|
> [afBe™™/(2) _ Cy7/(2w)]/a > R.

This yields a contradiction. We conclude that there exists ¢; > 0,
such that ||y(¢1) — y(0)|| > R. Observe that

/ 1 Vo(y(t))dt — e sin(wty )u

ly(t) — y(0)] = \ O

B /0 1 Vg (y(t))dt]| + Be " sin(wty)

< Crty/a+ Be M sin(wty)
< (C’l/a+ﬂw)t1. (21)
As a result, t; > Ra/(Cy + afw). We have thus identified a
minimum time taken by the trajectory to exit the ball of radius
R centered at y(0). Second, we show that, after some time,
the continuous trajectory never returns to the vicinity of any
spurious local minimum. To reason by contradiction, assume
that there exist ¢ € Z and ¢; < ts, such that ||y(t3) — vi|| < R.
Since the trajectory is continuous, there exists to € (t1,t3),
such that ||y(t2) — ;|| = R, that is to say, there exists d € R™,
suchthat ||d|| = 1and y(t2) = y; + Rd. Take t5 to be the largest
such instance in the interval (¢1,¢3). We then have
(¥ (t2),d)
= (=Vy(y(t2)) /o — Be "2 [—rsin(wts) + w cos(wia)]u, d)
= (Vy(yi + Rd), —d) /o
— Be M2 [ sin(wty) + w cos(wta)](u, d)

> Cofa — fe ™2 [=hsin(wtz) + w cos(wts)](u, d)
- {c — aBeM2\/32 + w? cos(wts + arctan(i /w))]} Ja
> (02 — aBe 2 m) Ja

> <02 — afe MR/ (Crtape) \/m) Ja

where in the last inequality we used the fact that Ra/(C; +
afw) < t1 < to. The Taylor expansion for ¢ > ¢2 in a neigh-
borhood of 5 reads

y(t) —y(ta) = ' (t2)(t — ta) + o(t — t2)

(22)

(23)
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from which we deduce that

CEOw

= (¥ (t2),d) + o(1)
> (02 — afeMRal (Citapw) m) /(2a) >0 (24)
where we used aBe R/ (Crtabw) /3212 < Oy, Hence
ly(t) = will = (w(t) =y, d) = (y(t) — y(t2) + y(t2) — i, d)
= (y(t) — y(ta), d) + (Rd,d)
> R. 25)

Recall that ||y (t5) — y(0)]] < R. By continuity of the trajectory,
there exists ¢ € (fo, t3], such that ||y(¢) — y;|| = R, which con-
tradicts the maximality of to. Hence, for all £ > t; and ¢ € Z,
we have that ||y (t) — y;|| > R.

Third, we show that z(t1) = y(t1) + Be 1 sin(wty)u is
in the region of attraction of a global minimum of the func-
tion f(x,t1). Now, we freeze the time at ¢;. Consider the set
D ={xzeR": f(z,t1) < f(x(t1),t1)} and choose D as the
connected component of D which contains the point x(¢1).
Because f(x,t1) is coercive, Dy is a compact set. In addition,
D; is a positively invariant set with respect to the gradient flow
system

i(s) = —Vaf(i(s), tr)

for the fixed time ¢; because the gradient flow system will
not increase the function value. Denote f*(¢1) as the global
minimum value of f(Z, ¢1) and take V(Z) = f(Z,t1) — f*(t1).
Then, V(&) is a Lyapunov function for (26), such that V(i) =
—|[Vzf(Z,t1)]|> <0 in D;. Let E be the points in D
such that V;f(Z,t;) = 0. Since g(x) has no saddle points
and local maxima outside of U;c7B(y;, R), then f(-,¢1) has
no saddle points and local maxima outside of U;czB(y; +
Be 1 sin (wty )u, R). Thus, the set E only contains the global
minima of f(Z,¢1). Furthermore, the set E is also an invariant
set with respect to (26). Then, by LaSalle’s theorem in [52,
Th. 4.4], the solution of (26) starting at x(¢;) converges to
the global minimum as s — oo. This implies that z(¢1) is in
the region of attraction of a global minimum of the function
f(z,t1). Finally, we show that the trajectory remains in the
region of attraction of the set of global minima after some time.
This follows immediately from the assumption that g(z) has no
saddle points and local maxima outside of U;e7 B(y;, R) and the
fact that the trajectory will never returns to the vicinity of any
spurious local minimum, that is, U;c7 B(y;, R).

Observe that a necessary condition for the absence of spuri-
ous trajectories readily follows from the proof of Theorem 3,
namely, that aSvw? + A2 > —Cs. Indeed, if afvw? + 12 <
—C', then the spurious local minima cannot be escaped, using
the same argument as in (23) and (24).

Remark 2: Spurious local minima are much more challeng-
ing to be escaped than saddle points and local maxima. In
Theorem 3, we assume that there are no saddle points or maxima
outside of a certain region containing the local minima (i.e.,
Uiez B(yi, R)). We do so in order to focus on the main contri-
bution of this work, which is that, time variation can lead to the
absence of spurious local trajectories. Without this assumption,
a significant part of the proof would deal with escaping saddle

(26)

points, a subject which has already been treated in various
papers [38], [53]-[56]. If the variation of the data occurs along
a direction u chosen randomly, then it may be argued that the
trajectory would escape saddle points with probability 1, using
the stable manifold theorem [57] as in [38], [53]-[56]. Theorem
3 would then hold almost surely.

Remark 3: Theorem 3 offers the first result in the literature
about when spurious minima of a time-invariant function can be
escaped via a time-varying deterministic local search method.
The existing results are focused on stochastic gradient descent
that offers a weaker result in a probabilistic sense [20]. This
theorem can be used to define the notion of escapable local
minima through the parameters C; and C5, and indeed if C1 is
small enough and C5 is large enough, the spurious local minima
can always be escaped based on the results of this theorem.

Although Theorem 3 is focused on a certain class of time-
varying functions, similar results can be obtained for other
classes of functions. The time-varying problem (4) is devoid
of spurious local trajectories if one can show that all solutions
of (6) with the initial point at any local solutions at ¢ = 0 are
contractive and the converging trajectory is inside the region of
attraction of the global minimum trajectory of (4) after some
finite time. This can be studied via the contraction analysis of
nonlinear systems [58]—[60].

V. FUNDAMENTAL PROPERTIES OF ODE

In this section, we provide the formal versions of Theorems 1
and 2 together with their proofs. We refer to the optimization
problem (5) as OPT(k, At,x,_1). Let the Jacobian of the
constraint set be defined as

thl (l‘)T
Vg;hg (Z‘)T
J(x) = . (27)

Vaihe(z)"

Definition 5: Given a feasible initial point xy, we say that
the tuple (zo, At, {z5t}52,) is an admissible KKT (AKKT)
tuple, if z5'* = x¢ and forevery k € {0,1,...}, 23 is afeasible
solution of OPT(k, At, 2,), it satisfies the KKT conditions,
and 7 (z4!) is nonsingular.

Assumption 3: There exists £ > 0, such that any 0 < At <t
is endowed with at least one AKKT tuple (zq, At, {z£1152 ).
Furthermore, for any AKKT tuple (o, At, {z2t}3° ), the se-
quence {zo, {z£}% ,} is uniformly bounded.

Roughly speaking, Assumption 3 implies that, for sufficiently
small time steps, the regularized problem remains feasible with
nondegenerate and bounded solutions.

According to Definition 5, the Jacobian matrix 7 (z£) is non-
singular for every k and every AKKT tuple (g, At, {z£2t}3° ).
In this work, we impose a slightly stronger condition on the
singular values of J (z{Y).

Assumption 4: There exists a universal constant ¢ > 0, such
that oumin(J (221)) > ¢ for every k and every AKKT tuple
(‘TO’ At, {kat}i@zo)~

Similar to Assumption 2, this assumption requires the con-
straints to be nondegenerate. Now, we are ready to present our
main theorem.
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Theorem 4: Consider the ODE (6) with the condition
x(0) = xg, where zg is a local solution to the time-varying
optimization (4) at t = 0. The following statements hold.

1. (Existence and uniqueness) Equation (4) has a continu-
ously differentiable and unique solution z : [0, 7] — R™.

2. (Convergence) Any AKKT tuple (z¢, At, {25!}, T/ At] )
satisfies
lim sup  ||z2t — z(kAL)| = 0. (28)

At=0" 0<k<[T/At]

We will regularly refer to the following lemma in our subse-
quent analysis.

Lemma I (Lipschitz property on a ball): Given a continuously
differentiable function p(z) : R” — R™, we have

Ip(z) — p(y)|l < L(e)||x — |

where L(e) is a universal constant independent of « and y, and
B(e) is the Euclidean ball centered at zero with radius e.
Proof: The proof is straightforward and omitted.

for every =,y € B(e)

A. Proof of Existence and Uniqueness

Next, we show the existence and uniqueness of the solution to
the proposed ODE. Without loss of generality, we assume that
t —ty—1 = At forevery k = 1, ..., [T/At]. Furthermore, to
simplify the notation, we may use the same symbols to refer
to different universal constants throughout the proofs. The next
three lemmas will be useful in proving the existence of a solu-
tion (6).

Lemma 2: There exist constants £ and ¢ > 0, such that for
every AKKT tuple (zo, At, {zpt}, T/At ) with At < 1, we have
28t — 28t || < cAtfork = 1,.

Proof: The proof is provided in the Appendix.

Lemma 3: Given an initial feasible point x, there exist

{sn}22; with lim,,,~ s, = 0 such that each s, is en-
dowed with an AKKT tuple (zo, s, {z}" }72,), and

2. a continuously differentiable and uniformly bounded
function  : [0, 7] — R™ that satisfies Z(0) = xo,

with the following properties:

lim  sup |jz" —Z(ksyp)|| =0 (29a)
n—o00 1§k§sl

T — )
lim sup ||[—A—FL _ F(ks,)|| = 0. (29b)

Moreover, there exists a universal constant ¢ > 0, such that
Omin (T (Z(t))) > cforevery t € [0,T].
Proof: The proof is provided in the Appendix.

Lemma 4: Consider two continuous functions g¢; : [0,T] —
R™ and g5 : [0,7] — R™. We have g1 = g5 if and only if
lim — sup [g1(kAL) — g2(kKAL)[[ =0. (30

At—0+ 0<k?<[ T “

Proof: The proof is straightforward and can be found in
standard references, e.g., [61].

We now provide the proof for the existence and uniqueness
of the solution for (6).

Proof of existence and uniqueness: Consider the
sequence {s,}°°, and its corresponding AKKT tuple

{(z0, s, {z}" }T/S") %, that is introduced in Lemma 3.

Due to Assumption 4, the linear independence constraint

qualification (LICQ) holds at ;" for k=0,...,T/s,
and n=1,...,00. Therefore, for every n, there exists
a sequence of Lagrangian vectors {z;" Z/ o' such that

T/ o A r/ /%) satisfies the KKT conditions

Qe
Vefelair) + @) i+ i — i) =0

n

(Stationarity)
hi(zy") = dik

fork =1,...,T/sp, where fi(x}") = f(z", ks,) and d; ), =
d;(ksy). The feasibility condition implies that for every ¢, we
have

(feasibility)

1 s s dig — di -1
— (hi(zy") = hi(ayry)) = = B
Ty — " dig —di -
= Vh ( Sn) < k k—l) _ Jk k=1 (31)
Sn n
for some Z;7}, = (1 — o)y + oy | with a; € [0, 1], where

the last implication is due to the differentiability of h;(x) and
the mean value theorem. For simplicity and with a slight abuse
of notation, define

Vhy(z77,)" di k
J{E7 i) = : ;odp=| (32)
Vhe (25,)" dr.k
This implies that
. t — dy — di,—
T, _1)< —t 1)= N € £)

Combining this equality with the stationarity condition leads to
T{Z =) Va filzy) + TUE =) T (@) g
d—1

+a (dk—
Sn

Now, note that, due to Assumption 4, opmin(J (2;")) > ¢ for
some universal constant ¢ > 0. Therefore, for every y suffi-
ciently close to mz" , J (y) remains full-row rank. Together with
the definition of {#}"},}7_; and Lemma 7 in the Appendix, this

implies that J ({77} _ )T (zp) "
small At. Therefore

W= = (T T @)

: (J({fi Ve filay) + a(dk—sdw»

(35)

Substituting this into the stationarity condition and performing
the necessary simplifications lead to

" _552"1 1 s\ T
v — I_ n
o < T (x3")

) =0. (34)

is invertible for sufficiently

Sn

< (TUEnY T @T) T T >>v filai)
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L) (TUamTeT) (A0

Sn
N s [ di—dp—1
e (455

Consider the continuously differentiable function Z(¢) that is
introduced in Lemma 3. The above equality together with (29b)
implies that

(36)

lim sup ||z(ks,)
di, — dp—1
({xzk 1Ty 7(5>> H =0.
(37)
Therefore, one can write
lim sup ||Z(ks,)
-9 <{f(k5n)}::1af(ksn)ad(ksn) H
< lim sup ||Z(ksy)
di, — dp—1
{xz kJi=1> wk ) s
(38)
+ lim  sup g ({j(ksn)}gzl, Z(ksy), d(k;sn))
n—00 OSkStﬁt

dy, — dj—
—4g ({‘i:,k}z 17'):79”3 <kkl)> H
Sn
We present the following lemma.

Lemma 5: Given ({z;}/_,,y,z) with (Oi_|lz) +
lgll + 1zl <e1 for  some ¢; >0, suppose that
Omin(T{Zi}7_1)T(§)") > co for some ca > 0. Then, there
exist constants L,r > 0, such that g({Z;}7_,7, 2) is locally
L-Lipschitz continuous in B = {({z; }/_,y,2) | 0o, |z —
zil) + 117 =yl + |2 — 2l <7}

Proof: Due to the continuous differentiability of 7 (x) and
Lemma 1, it is easy to see that r can be chosen such that
Omin (T ({2i}_1)T () ") = c2/2 for every ({i}i_1,y,2) €
B(r). This observation, together with the definition of
g(+,+, ) in (36), can be used to complete the proof. The details
are omitted for brevity.

According to Lemma 3, the function ¢(-, -, ) is locally Lip-
schitz continuous on a ball with nonzero radius and centered
at ({27} 1,372”,(M)) for every 0 <k < [L] and
n=1,...,00. This together with the definition of {Z;7 }7_,,
the differentlablhty of d(t), and Lemma 3 implies that for
sufficiently large n (or, equivalently, for sufficiently small s,,),

there exists a Lipschitz constant L such that

g ({2 (ksa) iy, @(ks,), d(ks,))

s s dy, — dg—
-9 <{xi,k}z IRENE <M>) H

Sn

— I3+ 2 (ksn) — |l

< L<Z 1Z(ksy)
=1

e~ ()] )

=< L((T + Dl 2(ksn) — ap || + rl|z((k = Dsn) — 232, |+

rl|Z(ksy) — Z((k — 1)s,)]| + H (ksn) — <dk_sjk1> H)
39

where we used the definition of {Z;7}7_, and triangle in-
equality. According to Lemmas 2 and 3, the right-hand side
of (39) converges to zero as n — oo. Therefore, combining (39)
and (37) with (38) implies that

lim
n—00

sup  ||Z(ksn)

0<k<[L]

— g ({@(ksa)Yicy, 2(hs), d(ksn) H ~0.
(40)

Furthermore, due to Lemma 3, 7 (Z(t)) is full-row rank at every
t € [0, 7] and, therefore, g({Z(¢)}i_,, Z(¢), d(t)) is continuous
as a function of ¢ in [0, T']. Invoking Lemma 4 then leads to

i(t) = g({zZ(t) Yy, Z(t), d(t))

atevery t € [0, T. This shows that Z : [0, 7] — R is a solution
to (6). Finally, due to Lemma 3, we have o,in (J (Z(t))) > ¢ for
a universal constant ¢ > 0. Therefore, Lemma 5 can be used to
verify the existence of an open and connected set D, such that
g(+, -, ) is locally L-Lipschitz continuous on D and (Z(t),t) €
D for every t € [0, T]. Therefore, [44, Th. 2.2] can be used to
show that Z : [0,7] — R" is the unique solution to (6).

(41)

B. Proof of Convergence

Next, we show the validity of the second statement in Theo-
rem 4.

Lemma 6 (Backward Euler iterations): There exists a univer-
sal constant £, such that for every At < ¢, there exists a sequence
{ypt}, T/ A1 that satisfies the following statements.

1) We have y&* = x( and

upt =y + At g (Y uf d(si)) @2)

fork=1,...,[T/At].
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2) There exists a universal constant ¢ > 0, such that
Hyk — yk 1|| < cAtfork=1,...,[T/At].
3) We have

lim  sup |lypt —ax(sp)| =0  (43)

At=0F 0<p<[T/At]

where x : [0,7] — R™ is the unique solution to (6).
4) We have opin(J (ykAt)) > ¢; for some universal ¢; and
every k =1,...,[T/At].

Proof: Note that, (42) is the backward Euler iterations
for (6) [62]. Furthermore, we have already shown the existence
of a continuously differentiable and uniformly bounded solution
to (6). The proof of the first three statements is immediately
followed by the classical results on convergence of the backward
Euler method; see [62] for more details. To verify the correctness
of the last statement, note that, we have shown in the previ-
ous subsection that the function Z : [0, 7] — R"™ introduced in
Lemma 3 is indeed the unique solution to the proposed ODE
and we have J(Z(t)) > ¢ for some universal ¢ > 0 and every
t € [0, T]. This together with (43) and Lemma 1 concludes the
proof.

Proof of convergence: The main idea behind the proof is to
show that, given any AKKT tuple (:co, At, {z2t}, T/ At] ), we
have
— Tk Pt | =0.

lim sup ||yk (44)

At=0% 0<k<[T/At]

Establishing this equality together with Lemma 6 is enough to
complete the proof.

It is evident from (36) that the AKKT tuple
(xo, At {xht}, T/At ) should satisfy
dy, — dy_
2t = 28t + Atg ({x Tt (’“’“)) (45)
At
where I, ”k = (1 — )z} + iz} | with a; € [0,1] for i =
1,...,n. Combined with the first statement of Lemma 6, this
1mphes that
At—ykAt xkAtl ykAfl
d, —dp1
At At e it
+ ( ({‘rzk =1L 7( At
~g ({yﬁt}:_l,yﬁt,ci(sm)) =2yt + A+ B

(46)

where

s o 1mtr o (1)

-9 ({yﬁh}?:uyﬁfhd(sw) ) (47a)
BZAtx( ({yk 1 : 17yk 1vd(sk)>

— g (Vi b d(s1)) >. (47b)

Define Ej, = ||z5t —y2?|| as the error at time-step k. Note
that, due to the Lemmas 3, 6, and 5, as well as the construction
of {if,ﬁ ”_,,thereexistuniversal constants L, ¢, > Osuch that,
for every At <, g(-,-,-) is locally L-Lipschitz continuous in
the balls

By = {({xi}:—la y>Z)

(i e - m)

i=1

#lat ol + | (AR ) -4 < } @)

(z " -xin)
=1

= ol + ds) o] < }

and

By = {({wi}:_la y,Z)

(49)

To simplify the notation, we denote || (%) — d(sy)| as D.
The following chain of inequalities will be useful in bounding

the expression A in (46):

(Z |24

w1>+Wk—%ﬂHD

<rlzet —yeh| + ¢+ 1) |lzpt — yehh|| + D
<rlzgty =yt + 4+ 1) 2Rt — 2pty |
+ (4 1) [l — g ||+ D
—aph||+D

<(@2r+1)Er 1+ (r+ e At + coAt?

1)

=©2r+ 1B+ (r+1) ||z’
)

< (2r+1)Ex1 + ((r+1)cg + o)At

(50)

provided that At < #;, where t1, ¢1, co > 0 are constants. Note
that, the last two inequalities are due to Lemma 2 and the twice
differentiability of d(t).

Subsequently, the next inequality will be used to bound the
expression B in (46). In particular, Lemma 6 can be used to
show the existence of constants c3, t5 > 0 such that

(r+ Dllyty — yrtll < csAt (51)

provided that At < #5. Given the inequalities (50) and (51), we
prove the validity of (28) by proving the following statements.
1. There exists a universal constant 3 such that for every
At <tz and k=0,...,T/At, (50) and (51) will be
upper bounded by ¢ which is defined as the radius of
the balls (48) and (49). This together with the locally
L-Lipschitz continuity of g(-, -, -) within the balls 3; and
B leads to

|A|| < (2r + 1)LAtE, 1 + ((r + 1)ey + c2) LA
(52a)

| B < esLAE. (52b)
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Combining these inequalities with (46) results in the
following recursive inequality:
Ek < (1 + (2’/‘ + 1)LAt)Ek,1
+ ((r4 1)1 + co 4+ c3) LAt (53)

2. We have lima; 0+ Supg<p<7/at Ex = 0.
We prove the first statement using an inductive argument on
k. In particular, we show that if the following inequality holds:

(2r+1)c
((r+1)c1 + c2 + ¢3)(e@rtOTL — 1)’

At § min {tl,tg,

c _
7\/((T+1)Cl+62+03)L’} =13 (54)

then (50) and (51) remain in the balls 31 and Bs, respectively,
and hence, (53) holds for k =0, ..., T/At.

Base Case: k = 1. Note that, in this case, F/y = 0 and, there-
fore, based on (54), we have At < t; and At < #,. This implies
thatboth (50) and (51) are upper bounded by ¢ and, based on (53),
we have

Ey < (14 (2r + 1)LAt)Eg + ((r + 1)eg + 2 + ¢3) LA#?
=((r+1e; +cat+c3) LA <@ (55)

where the last inequality is due to (54).
Inductive Step: Suppose that we have

@Cr+1)Ep 1+ ((r+1)er+ o)At <ée,  c3At <é (56a)
for k =0,...,m — 1. This implies that (53) holds for k =

1,..., m. With some algebra, one can verify that
m—1
Epm < ((r+1)e1 + ca+ c3) LA Y (14 (2r + 1) LA’
i=0
14+ (2r+1)LAt)™ -1
< 1 LAt - (
s (rtDeterte) (2r + 1) LAt
1
S (7" + )Cl + Co +CS ((1 + (2T + 1)LAt)T/At _ 1) At
2r +1
< (r+1)ci+c2+c3 (e(2r+1)LT _ 1) At <é (57)
2r+1

which completes the proof of the first statement. To prove the
second statement, note that, the above analysis leads to

(r+ 1)261:102 +c3 (6(2T+1)LT B 1) At
T

sup FEj <
0<k<T/At

assuming that At < #3. Due to the fact that {3 > 0 and is
independent of At, we have

lim sup FEr=0

(58)
At=0% 0<kp<T/At

thereby completing the proof of the convergence.

VI. PROPERTIES OF SYSTEM’S JACOBIAN

In this section, we additionally assume that the objective
function f(x,t) is twice continuously differentiable in x.
For the constraint functions h = (hy, ho, ..., h,,), the corre-
sponding Hessian matrices Hy, Hs, ..., H,;, € R™"™ are the

second partial derivative of h with respect to z. The second-
order derivative operator of h, denoted by H, is now re-
garded as the m-tuple H = (H,y,...,H,,). For p € R™ and
x € R™, uH denotes py Hy + ... + p Hyy, and 2" Hzx denotes
o Hix+ ...+ x" Hyx. For My, My € R™™, M, HMsx de-
notes [MyHy Msz, ..., My H,, Msx]. In addition, we have the
identity pz"He = " pHzx.
Consider the time-invariant optimization problem

xiergn f(z)sth(z)=d

where h(z) = [h1(2),..., hm(2)]T and d = [dy,...,d,]T.
The corresponding ODE is given by

(59)

b= _é (1= T@) (T@)T(2)") ' T(@)] V@), ©60)

The above ODE is known as the Riemannian gradient flow, and
it is well studied in the literature [46]-[48]. Let z be a local
minimum of (59) satisfying the first-order necessary and second-
order sufficient optimality conditions

h(z) =d, J(2)J(2)" is invertible
V() +pd(z)=0,w" (V2f(2)+ H(z))w>0 (61b)

for some p € R™ and every nonzero vector w such that
J(2)"w = 0. Note that, z is an equilibrium point of the sys-
tem (60). Let the right-hand side of (60) be denoted by p(x)

(61a)

plr) i= = P()V f(2) (©2)
where P(z) = I — J(z)" (T (2)T (z) ") 1T (z) and let T, ()
denote the Jacobian of p(x).
Theorem 5: It holds that
T(z) = —é (V2f(2) + pH(2) P(z).  (63)
Moreover, J,(z) has n — m eigenvalues with negative real parts
and m zero eigenvalues.

Proof: The equation (63) follows from [63, Corollary 1].
To study the eigenvalues of J,(z), note that, J,(2)J(2)" =
0. Therefore, jp(z) has at least m zero eigenvalues. Let w €
R™ be an arbitrary nonzero vector in the tangent plane of the
manifold { : h(z) = d} at the point x = z. This means that
J(2)Tw = 0. On the other hand, the second-order sufficient
optimality condition states that w' (V2f(z) 4+ pH(z))w > 0.
Therefore, we have w ' Qw > 0, where

Q =P(2) (V?f(2) + pnH(2)) P(z).

Since J(z) is in the null space of the symmetric matrix €2 and
w'Qw > 0 for every w that is orthogonal of [7(z), it can be
concluded that 2 has n — m eigenvalues with positive real parts.
On the other hands, the eigenvalues of §2 are the same of the
eigenvalues of the matrix

(V2f(2) + nH(2)) P*(z) = (V2 f(2) + pH (2)) P(2) (65)

which is identical to —a. 7, ().

As shown above, the eigenvalues of the Jacobian only have
nonpositive real parts. This explains why spurious solutions
of a time-invariant optimization problem cannot be escaped
using gradient-based methods, such as the ODE (60). Now,
consider its time-varying counterpart problem (4) and asso-
ciated ODE (6). Let z(t) : [0,7] — R™ be a local solution

(64)
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of (4) that satisfies the first-order necessary and second-order
sufficient optimality conditions for all ¢ € [0, 7. Let p(t) de-
note the corresponding Lagrange multiplier and Q(z(t)) de-
note J(2(t))" (T (2(t))T(2(t))")~L. Since z(t) is generally
not the solution of the ODE (6), we make a change of variables
e(t) = x(t) — z(t) to measure the distance between x(t) and
z(t). Then, the ODE (6) can be rewritten as

6(6) = ~n(e(t) + =(0), 1) + B(e(t) + =(1))d — 2(1).
Let J,(=(t)) denote the Jacobian of the right-hand side of (66)

at the point e(¢) = 0. By taking the first-order approximation of
(66) around z(t), we have

(66)

é(t) = Ty(=()e(t) + O(3() — 2(1).  (67)
Theorem 6: 1t holds that
Tg(2(1)) = Ki(t) + Ka(t) (68)

2 (VRH(0) + pH) P(0)  (©9)

-1

Ky (t) = (P(=(t) H (=(t)) (T (2() T (=(t)) ")
= Q(=(1) H (=(1) Q(=(1)))d(1).

Proof: The computation of K7 (t) is similar to that of The-
orem 5. Because of the tensor nature of H it is convenient to
differentiate with respect to each component separately. For the
component 21 (t), we have

d
le (t)

— T (TEO)TEO)) T (H )T (1)
IO (1) (T (0)T (1)) d(1)
= (PO E®) (TEO)T @)
~Q((0) 1 (=(6) Q=(1))) d(t).

Similar expressions apply to derivatives with respect to other
components. These columns can be combined into the matrix

J d
[WQW)% T dza(t)

This matrix is Ko (t).

Notice that, K;(t) has only eigenvalues with nonpositive
reals (due to Theorem 5) but K5(t) may have eigenvalues
with positive reals depending on the time-variation. Thus,
the time variation could potentially make the linear system
é(t) = J,(z(t))e(t) unstable. If O(e?(t)) — 2(¢) is not large,
we may expect that the solution of (67) will behave similarly to
é(t) = Jy(2(t))e(t) and cannot stay around the point 0. Thus,
the time-variation may provide the opportunity to escape the
spurious local trajectory z(t). Note that, the linearization does
not always provide a concrete answer for time-varying ODEs,
but this result offers an insight into how the data variation
changes the eigenvalues of the Jacobian along a trajectory close
to a KKT trajectory.

(69b)

Q(=(1))d(t) = Hi(=(t)) (T ()T (=(1)7) " d(t)

Q(=(t)) | d(t).

VIl. CONCLUSION

In this article, we study the landscape of time-varying noncon-
vex optimization problems. We introduce the notion of spurious
local trajectory as a counterpart to the notion of spurious local
minima in the time-invariant optimization. The key insight to
this new notion is the fact that a regularized version of the
time-varying optimization problem is naturally endowed with
an ODE at its limit. This close interplay enables us to study the
solutions of this ODE to certify the absence of the spurious local
trajectories in the problem. Through different case studies and
theoretical results, we show that a time-varying optimization
may have multiple spurious local minima, and yet its landscape
can be free of spurious local trajectories. We further show that
the variation of the landscape over time is the main reason behind
the absence of spurious local trajectories.

As a future research direction, we will study the robustness
of the solution trajectories against perturbations, along the same
lines as [64]. Furthermore, it would be worthwhile to extend the
notion of spurious local trajectories to time-varying optimization
over an infinite-time horizon.

APPENDIX

Lemma 7: We have ||z4! O(V/At) forevery k =
0,...,[T/At].

Proof: Note that, f(x,t) is uniformly bounded from below.
Furthermore, for every AKKT tuple (zq, At, {5t} /At ) the
T/At

—xk 1” =

sequence {:c,c b is assumed to be uniformly bounded.
This together with Assumption 1 implies that
f (CE ?t7 tk)

et — 2ty I° <R (70)

+oar
for some R < oo. Since f(a:k ,tk) is assumed to be uniformly
bounded from below, this leads to 5% ||z — 24!, [|> < R’ for
some R’ < oo, which in turn yields |22t — 28, || = O(VAt).

Proof of Lemma 2: Due to Lemma 7 and the fact that 7 ()
is continuously differentiable, one can invoke Lemma 1 to show
that there exist constants £, ¢y, ca > 0, such that the following
statements hold, provided that At < ¢.

1) Consider a sequence {@A]z 7_, constructed similar
to (33). Due to Assumption 4 and Lemma 7, it
can be verified that there exist t,c¢; > 0, such that
Tmin(J ({a?At )T (@2H)T) > ¢ for all At < #. This

implies that the function g({Z2} it ot (%))
introduced in (36) is well defined and continuous for all
At < t.

2) Assumption 3 and twice differentlablhty of d with respect
to ¢ imply that {{1‘1 L 28t} and (%) belong to
a compact set. Combined with the continuity of ¢(-), this
implies that

dp — dp_
(vt (458 oo

for some ¢y > 0.
3) Similar to (36), one can verify that the following equality
holds:

At At
L S e dy,
=49 {$ i=1 Lk

—di—1
At At '
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Combined with (71), this implies that [|z{! — 28, || < caAt
and the proof is complete. g

Proof of Lemma 3: Consider a sequence {s,}2_;, such
that s,, > 0 and lim,, ,,, s, = 0. Furthermore, without loss
of generality, we assume that T'/s,, is a natural number for
every n =1,...,00. Given any n, consider a AKKT tuple
(xo, sn, {2} }72,) and define a vector-valued function Z,, :
[0,7] — R™ whose ith element is the spline interpolation of
the ith elements of the vectors {xg", 21", ..., 257, }. Notice
that, this interpolation can be made in such a way that z, is
continuously differentiable. We prove this lemma by showing
that there exist a continuously differentiable function Z and a
subsequence {Z;, }7°; of {Z, }o_,,such that {Z,, }°°, and
{:Lvtm ° , converge uniformly to Z and 7, respectively. Note
that, Z4, is continuous for n =1,...,00, due to Lemma 2.
Consider the class of functions X = {Z;, | n=1,...,00}.
X is uniformly bounded (due to Assumption 4) and equicon-
tinuous. Therefore, the Arzela—Ascoli theorem can be invoked
to show the existence of a uniformly convergent subsequence
{2+, tpzq-Letz : [0,T] — R" bethelimitof {Z;, };2;.Now,
consider the sequence {ftnk }2°_ ;. Notice that, due to the con-
struction, {alctnk }2°_, is continuous. Consider the class of func-
tions X' = {:Lct"k | k=1,...,00}. Similar to the previous case,
X is uniformly bounded and equicontinuous. Therefore, another
application of Arzela—Ascoli theorem implies that {j@tnk 1,

has a subsequence {itm 102, that converges uniformly to a
function y : [0,T] — R™. Since {n, }°2; C {ng}72,, we have
that {Z;, }72, converges uniformly to z. Therefore, due to
(62, Th. 7.17], we have z = y. Finally, recall that {z;" }2_, is
uniformly bounded and there exists a universal constant ¢ such
that 7 (x;") > cfork=0,...,T/s, andn = 1,...,00. This
implies that the function sequence {Z¢, }7>, is also uniformly
bounded and since they converge uniformly to Z, one can invoke
Lemma 1 to verify the existence of a universal ¢’ > 0 such that
c¢>c and J(z(t)) > c forevery t € [0,T]. O
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