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Time-Variation in Online Nonconvex
Optimization Enables Escaping From Spurious
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Abstract—A major limitation of online algorithms that
track the optimizers of time-varying nonconvex optimiza-
tion problems is that they focus on a specific local minimum
trajectory, which may lead to poor spurious local solutions.
In this article, we show that the natural temporal variation
may help simple online tracking methods find and track
time-varying global minima. To this end, we investigate the
properties of a time-varying projected gradient flow system
with inertia, which can be regarded as the continuous-time
limit of (1) the optimality conditions for a discretized se-
quential optimization problem with a proximal regulariza-
tion and (2) the online tracking scheme. We introduce the
notion of the dominant trajectory and show that the inher-
ent temporal variation could reshape the landscape of the
Lagrange functional and help a proximal algorithm escape
the spurious local minimum trajectories if the global mini-
mum trajectory is dominant. For a problem with twice con-
tinuously differentiable objective function and constraints,
sufficient conditions are derived to guarantee that no mat-
ter how a local search method is initialized, it will track a
time-varying global solution after some time. The results
are illustrated on a benchmark example with many local
minima.

Index Terms—Nonconvex optimization, stability analysis,
time-varying optimization.

I. INTRODUCTION

IN THIS article, we study the following equality-constrained
time-varying optimization problem:

min
x(t)∈Rn

f(x(t), t)

s.t. g(x(t), t) = 0 (1)
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where t ≥ 0 denotes the time and x(t) is the optimization
variable that depends on t. Moreover, the objective
function f : Rn × [0,∞) → R and the constraint function
g(x, t) = (g1(x, t), . . . , gm(x, t)) with gk : Rn × [0,∞) → R
for k = 1, . . .,m are assumed to be twice continuously differ-
entiable in state x and continuously differentiable in time t. For
each time t, the function f(x, t) could potentially be nonconvex
in x with many local minima and the function g(x, t) could also
potentially be nonlinear in x, leading to a nonconvex feasible
set. The objective is to solve the abovementioned problem online
under the assumption that at any given time t the function f(x, t′)
and g(x, t′) are known for all t′ ≤ t while no knowledge about
f(x, t′) or g(x, t′) may be available for any t′ > t. Therefore,
the problem (1) cannot be minimized offline and should be
solved sequentially. Another issue is that the optimization
problem at each time instance could be highly complex due
to NP-hardness, which is an impediment to finding its global
minima. This article aims to investigate under what conditions
simple local search algorithms can solve the above online
optimization problem to almost global optimality after some
finite time. More precisely, the goal is to devise an algorithm
that can track a global solution of (1) as a function of time t with
some error at the initial time and a diminishing error after some
time.

If f(x, t) and g(x, t) do not change over time, the problem
reduces to a classic (time-invariant) optimization problem. It
is known that simple local search methods, such as stochas-
tic gradient descent (SGD) [2], may be able to find a global
minimum of such time-invariant problems (under certain con-
ditions) for almost all initializations due to the randomness
embedded in SGD [3]–[5]. The objective of this article is to
significantly extend the abovementioned result from a single
optimization problem to infinitely-many problems parametrized
by time t. In other words, it is desirable to investigate the
following question: Can the temporal variation in the land-
scape of time-varying nonconvex optimization problems en-
able online local search methods to find and track global
trajectories? To answer this question, we study a first-order
time-varying ordinary differential equation (ODE), which is
the counterpart of the classic projected gradient flow system
for time-invariant optimization problems [6] and serves as a
continuous-time limit of the discrete online tracking method
for (1) with the proximal regularization. This ODE is given
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Fig. 1. Illustration of Example 1 (in order to increase visibility, the objective function values are rescaled). Jumping from a spurious local minimum
trajectory to a global minimum trajectory occurs in (a) and (d) when the inertia α and the change (controlled by the parameter b) of local minimum
trajectory are appropriate.

as

ẋ(t) = − 1

α
P(x(t), t)∇xf(x(t), t)−Q(x(t), t)g′(x(t), t)

(P-ODE)
whereα > 0 is a constant parameter named inertia due to a prox-
imal regularization, g′(z, t) = ∂g(z,t)

∂t ,P(x(t), t) andQ(x(t), t)
are matrices related to the Jacobian of g(x, t) that will be
derived in detail later. A system of the form (P-ODE) is called
a time-varying projected gradient system with inertia α. The
behavior of the solutions of this system initialized at different
points depends on the value of α. In the unconstrained case, this
ODE reduces to the time-varying gradient system with inertia α
given as

ẋ(t) = − 1

α
∇xf(x, t). (ODE)

In what follows, we offer a motivating example without con-
straints (to simplify the visualization) before stating the goals of
this article.

A. Motivating Example

Example 1: Consider f(x, t) := f̄(x− b sin(t)), where

f̄(y) :=
1

4
y4 +

2

3
y3 − 1

2
y2 − 2y.

This time-varying objective has a spurious (nonglobal) local
minimum trajectory at −2 + b sin(t), a local maximum tra-
jectory at −1 + b sin(t), and a global minimum trajectory at
1 + b sin(t). In Fig. 1, we show a bifurcation phenomenon
numerically. The red lines are the solutions of (P-ODE) with
the initial point −2. In the case with α = 0.3 and b = 5, the
solution of (P-ODE) winds up in the region of attraction of the
global minimum trajectory. However, for the case with α = 0.1
and b = 5, the solution of (P-ODE) remains in the region of
attraction of the spurious local minimum trajectory. In the case
with α = 0.8 and b = 5, the solution of (P-ODE) fails to track
any local minimum trajectory. In the case with α = 0.1 and
b = 10, the solution of (P-ODE) winds up in the region of
attraction of the global minimum trajectory.

Two observations can be made here. First, jumping from a
local minimum trajectory to a better trajectory tends to occur
with the help of a relatively large inertia when the local minimum
trajectory changes the direction abruptly and there happens

Fig. 2. |x(t)| [magnitude of the solution of (ODE)].

to exist a better local minimum trajectory in the direction of
the inertia. Second, when the inertia α is relatively small, the
solution of (P-ODE) tends to track a local (or global) minimum
trajectory closely and converges to that trajectory quickly.

Example 2: Consider the time-varying optimal power flow
(OPF) problem, as the most fundamental problem for the op-
eration of electric power grids that aims to match supply with
demand while satisfying network and physical constraints. Let
f(x, t) be the function to be minimized at time t, which is the
sum of the total energy cost and a penalty term taking care of
all the inequality constraints of the problem. Let g(x, t) = 0
describe the time-varying demand constraint. Assume that the
load data corresponds to the California data for August 2019. As
discussed in [7], this time-varying OPF has 16 local minima at
t=0 and many more for some values of t > 0. However, if (ODE)
is run from any of these local minima, the 16 trajectories will all
converge to the globally optimal trajectory, as shown in Fig. 2.
This observation has been made in [7] for a discrete-time version
of the problem, but it also holds true for the continuous-time
(ODE) model.

B. Our Contributions

To mathematically study the observations made in Examples 1
and 2 for a general time-varying nonconvex optimization prob-
lem with equality constraints, we focus on the aforementioned
time-varying projected gradient flow system with inertia α as
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a continuous-time limit of an online updating scheme for (1).
We first introduce a time-varying Lagrange functional to unify
the analysis of unconstrained problems and equality-constrained
problems, and make the key assumption that the time-varying
Lagrange functional is locally one-point strongly convex around
each local minimum trajectory. This assumption is justified by
the second-order sufficient optimality conditions. A key property
of (P-ODE) is that its solution will remain in the time-varying
feasible region if the initial point is feasible for (1), which allows
us to use the Lyapunov technique without worrying about the
feasibility of the solution. Then, we show that the time-varying
projected gradient flow system with inertia α is a continuous-
time limit of the Karush–Kuhn–Tucker (KKT) optimality con-
ditions for a discretized sequential optimization problem with
a proximal regularization. The existence and uniqueness of the
solution for such ODE is proven.

As a main result of this article, it is proven that the natural
temporal variation of the time-varying optimization problem
encourages the exploration of the state space and reshaping the
landscape of the objective function (in the unconstrained case)
or the Langrange functional (in the constrained case) by making
it one-point strongly convex over a large region during some
time interval. We introduce the notion of the dominant trajectory
and show that if a given spurious local minimum trajectory is
dominated by the global minimum trajectory, then the temporal
variation of the time-varying optimization would trigger escap-
ing the spurious local minimum trajectory for free. We develop
two sufficient conditions under which the ODE solution will
jump from a certain local minimum trajectory to a more desirable
local minimum trajectory. We then derive sufficient conditions
on the inertia α to guarantee that the solution of (P-ODE) can
track a global minimum trajectory. To illustrate how the time
variation nature of an online optimization problem promotes
escaping a spurious minimum trajectory, we offer a case study
with many shallow minimum trajectories.

C. Related Work

Online time-varying optimization problems: Time-varying
optimization problems of the form (1) arise in the real-time
optimal power flow problem [8], [9] for which the power loads
and renewable generations are time-varying and operational
decisions should be made every 5 min, as well as in the real-time
estimation of the state of a nonlinear dynamic system [10]. Other
examples include model predictive control [11], time-varying
compressive sensing [12], [13], and online economic optimiza-
tion [14], [15]. There are many researches on the design of
efficient online algorithms for tracking the optimizers of time-
varying convex optimization problems [16]–[19]. With respect
to time-varying nonconvex optimization problems, Asif and
Romberg [20] presented a comprehensive theory on the struc-
ture and singularity of the KKT trajectories for time-varying
optimization problems. On the algorithm side, Tang et al. [8]
provided regret-type results in the case where the constraints are
lifted to the objective function via penalty functions. Tang et al.
[21] developed a running regularized primal-dual gradient algo-
rithm to track a KKT trajectory, and offers asymptotic bounds on

the tracking error. Massicot and Marecek [22] obtained an ODE
to approximate the KKT trajectory and derives an algorithm
based on a predictor-corrector method to track the ODE solution.

Recently, Fattahi et al. [23] proposed the question of whether
the natural temporal variation in a time-varying nonconvex
optimization problem could help a local tracking method escape
spurious local minimum trajectories. It developed a differential
equation to characterize this phenomenon (which is the basis of
the current work), but it lacked mathematical conditions to guar-
antee this desirable behavior. Mulvaney-Kemp et al. [7] studied
this phenomenon in the context of power systems and verifies
on real data for California that the natural load variation enables
escaping local minima of the optimal power flow problem. The
current work significantly generalizes the results of [23] and [7]
by mathematically studying when such an escaping is possible.

Local search methods for global optimization: Nonconvexity
is inherent in many real-world problems: the classical compres-
sive sensing and matrix completion/sensing [24]–[26], training
of deep neural networks [27], the optimal power flow prob-
lem [28], and others. From the classical complexity theory,
this nonconvexity is perceived to be the main contributor to the
intractability of these problems. However, it has been recently
shown that simple local search methods, such as gradient-based
algorithms, have a superb performance in solving nonconvex
optimization problems. For example, Lee et al. [29] showed
that the gradient descent with a random initialization could
avoid the saddle points almost surely, and Jin et al. [3] and
Ge et al. [4] proved that a perturbed gradient descent and SGD
could escape the saddle points efficiently. Furthermore, it has
been shown that nearly-isotropic classes of problems in ma-
trix completion/sensing [30]–[32], robust principle component
analysis [33], [34], and dictionary recovery [35] have benign
landscape, implying that they are free of spurious local minima.
Kleinberg et al. [5] proved that SGD could help escape sharp
local minima of a loss function by taking the alternative view
that SGD works on a convolved (thus, smoothed) version of the
loss function. However, these results are all for time-invariant
optimization problems for which the landscape is time-invariant.
In contrast, many real-world problems should be solved sequen-
tially over time with time-varying data. Therefore, it is essential
to study the effect of the temporal variation on the landscape of
time-varying nonconvex optimization problems.

Continuous-time interpretation of discrete numerical algo-
rithms: Many iterative numerical optimization algorithms for
time-invariant optimization problems can be interpreted as a
discretization of a continuous-time process. Then, several new
insights have been obtained due to the known results for
continuous-time dynamical systems [36], [37]. Perhaps, the sim-
plest and oldest example is the gradient flow system for the gra-
dient descent algorithm with an infinitesimally small step size.
The recent papers Su et al. [38], Krichen et al. [39], Wibisono
et al. [40] studied accelerated gradient methods for convex
optimization problems from a continuous-time perspective. In
addition, the continuous-time limit of the gradient descent is
also employed to analyze various nonconvex optimization prob-
lems, such as deep linear neural networks [41] and matrix
regression [42]. It is natural to analyze the continuous-time
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limit of an online algorithm for tracking a KKT trajectory of
time-varying optimization problem [16], [21]–[23].

D. Paper Organization

This article is organized as follows. Section II presents some
preliminaries for time-varying optimization with equality con-
straints and the derivation of time-varying projected gradient
flow with inertia. Section III offers an alternative view on the
landscape of time-varying nonconvex optimization problems
after a change of variables and explains the role of the time
variation of the constraints. Section IV analyzes the jumping,
tracking, and escaping behaviors of local minimum trajectories.
Section V illustrates the phenomenon that the time variation of
an online optimization problem can assist with escaping spurious
local minimum trajectories, by working on a benchmark exam-
ple with many shallow minimum trajectories. Finally, Section VI
concludes this article.

E. Notation

The notation ‖ · ‖ represents the Euclidean norm. The in-
terior of the interval Īt,2 is denoted by int(Īt,2). The sym-
bol Br(h(t)) = {x ∈ Rn : ‖x− h(t)‖ ≤ r} denotes the region
centered around a trajectory h(t) with radius r at time t. We
denote the solution of ẋ = f(x, t) starting from x0 at the initial
time t0 with x(t, t0, x0) or the short-hand notation x(t) if the
initial condition (t0, x0) is clear from the context.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Time-Varying Optimization With Equality Constraints

The first-order KKT conditions for the time-varying optimiza-
tion (1) are as follows:

0 = ∇xf(x(t), t) + Jg(x(t), t)

λ(t) (2a)

0 = g(x(t), t) (2b)

where Jg(z, t) :=
∂g(z,t)

∂z denotes the Jacobian of g(·, ·) with
respect to the first argument and λ(t) ∈ Rm is a Lagrange
multiplier associated with the equality constraint. We first make
some assumptions as follows.

Assumption 1: f : Rn × [0,∞) → R is twice continuously
differentiable in x ∈ Rn and continuously differentiable in t ≥
0. gk : Rn × [0,∞) → R is twice continuously differentiable in
x ∈ Rn and twice continuously differentiable in t ≥ 0 for k =
1, . . . ,m. Moreover, at any given time t, f(x, t) is uniformly
bounded from below over the set {x ∈ Rn : g(x, t) = 0}, mean-
ing that there exists a constant M such that f(x, t) ≥ M for all
x ∈ {x ∈ Rn : g(x, t) = 0} and t ≥ 0.

Assumption 2: The feasible set at t defined as

M(t) := {x ∈ Rn : g(x, t) = 0}
is nonempty for all t ≥ 0.

Assumption 3: For all t ≥ 0 and x ∈ M(t), the matrix
Jg(x, t) has full row-rank.

Remark 1: Although Assumption 3 is somewhat stronger
than the Linear independence constraint qualification [43], it

is necessary for our following analysis because with different
values of α and different initial points, the solution of (P-ODE)
may land anywhere in the feasible region. Furthermore, Sard’s
theorem [44] ensures that if the constraint function g(·, t) is
sufficiently smooth, then the set of values of g(·, t), denoted
as S(t), for which Jg(x, t) is not full row-rank has measure
0. Thus, Assumption 3 is satisfied if 0 /∈ S(t) where S(t) is
only a set with measure 0. Finally, if the inertia parameter α is
fixed and the initial point of (P-ODE) is a local solution, then
Fattahi et al. [23] provided a sophisticated proof for the existence
and uniqueness of the solution for a special class of (P-ODE)
under a minor assumption that the Jacobian has full-row rank
only at the discrete local trajectories (which is defined in the
paragraph after (10) in our work). However, to be able to study
the solution of (P-ODE) for all α > 0 and any initial feasible
point and keep the focus of the article on studying the escaping
behavior, we made Assumption 3.

Under Assumption 3, the matrix Jg(x(t), t)Jg(x(t), t)

 is

invertible and, therefore, λ(t) in (2a) can be written as

λ(t) = −(Jg(x(t), t)Jg(x(t), t)

)−1Jg(x(t), t)∇xf(x(t), t).

(3)

Since λ(t) is written as a function of x(t) in (3), we also denote
it as λ(x(t), t). Now, (2a) can be written as

0 =
[
In − Jg(x(t), t)


(Jg(x(t), t)Jg(x(t), t)

)−1

× Jg(x(t), t)]∇xf(x(t), t) (4)

where In is the identity matrix in Rn×n. For the sake of read-
ability, we introduce the symbolic notation

P(x(t), t) := In − Jg(x(t), t)

(Jg(x(t), t)Jg(x(t), t)


)−1

× Jg(x(t), t)

which is the orthogonal projection operation onto T t
x, where

T t
x denotes the tangent plane of g(x(t), t) at the point x(t) and

the time t. It is convenient and conventional to introduce the
time-varying Lagrange functional

L(x, λ, t) = f(x, t) + λg(x, t). (5)

In terms of this functional, (4) can be written as

0 = ∇xL(x, λ, t) (6)

where λ is given in (3). Here, ∇xL(x, λ, t) means first taking
the partial gradient with respect to the first argument and then
using the formula (3) for λ. Since the solution is time-varying,
we define the notion of the local (or global) minimum trajectory
below.

Definition 1: A continuous trajectory h : It → Rn, where
It ⊆ [0,∞), is said to be a local (or global) minimum trajectory
of the time-varying optimization (1) if each point of h(t) is a
local (or global) minimum of the time varying optimization (1)
for every t ∈ It.

In this article, we focus on the case when the local minimum
trajectories will not cross, bifurcate or disappear by assuming
the following uniform regularity condition.
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Assumption 4: For each local minimum trajectory h(t), its
domain It is [0,∞) and h(t) satisfies the second-order sufficient
optimality conditions uniformly, meaning that ∇2

xxL(h(t), λ, t)
is positive definite on T t

h(t) = {y : Jg(h(t), t)

y = 0} for all

t ∈ [0,∞).
Lemma 1: Under Assumptions 1–4, each local minimum

trajectory h(t) is differentiable and isolated, and therefore, it can
not bifurcate or merge with other local minimum trajectories.

Proof: Under Assumptions 1–4, one can apply the inverse
function theorem to (2) (see [45, Theorem 4.4, Example 4.7]) to
conclude that for every h(t̄) and t̄, there exist an open set Sh(t̄)

containing h(t̄) and an open set St̄ containing t̄ such that there
exist a unique differentiable function x(t) in Sh(t̄) for all t ∈ St̄

where x(t) is the isolated local minimizer of the time-varying
optimization problem (1). Because of this uniqueness property
and the continuity of the local minimum trajectory h(t), x(t)
must coincide with h(t) for all t ∈ St̄. Then, because the above
property holds uniformly for every t ∈ [0,∞), h(t) must be a
differentiable isolated minimum trajectory. �

After freezing the time t in (1) at a particular value, one
may use local search methods, like Rosen’s gradient projection
method [46], to minimize f(x, t) over the feasible region M(t).
If the initial point is feasible and close enough to a local solution
and the step size is small enough, the algorithm will converge
to the local minimum. This leads to the notion of region of
attraction defined by resorting to the continuous-time model of
Rosen’s gradient projection method [6] (for which the step size
is not important anymore).

Definition 2: The region of attraction of a local minimum
point h(t) of f(·, t) in the feasible set M(t) at a given time t is
defined as

RAM(t)(h(t)) =

{
x0 ∈ M(t)

∣∣ lim
t̃→∞

x̃(t̃) = h(t) where

dx̃(t̃)

dt̃
= −P(x̃(t̃), t)∇xf(x̃(t̃), t) and x̃(0) = x0

}
.

In the unconstrained case, the notion of the locally one-point
strong convexity can be defined as follows.

Definition 3: Consider arbitrary positive scalars c and r. The
function f(x, t) is said to be locally (c, r)-one-point strongly
convex around the local minimum trajectory h(t) if

∇xf(e+ h(t), t)
e ≥ c ‖e‖2 , ∀e ∈ D, ∀t ∈ [0,∞) (7)

where D = {e ∈ Rn : ‖e‖ ≤ r}. The region D = {e ∈ Rn :
‖e‖ ≤ r} is called the region of locally (c, r)-one-point strong
convexity around h(t).

This definition resembles the (locally) strong convexity con-
dition for the function f(x, t), but it is only expressed around
the point h(t). This restriction to a single point constitutes the
definition of one-point strong convexity and it does not imply
that the function is convex. The following result paves the way
for the generalization of the notion of the locally one-point
strong convexity from the unconstrained case to the equality
constrained case.

Lemma 2: Consider an arbitrary local minimum trajectory
h(t) satisfying Assumption 4, there exist positive constants r̂

and ĉ such that

e(t)
∇xL(e(t) + h(t), λ(e(t) + h(t), t), t) ≥ ĉ ‖e(t)‖2

for all e(t) ∈ {e+ h(t) ∈ M(t) : ‖e‖ ≤ r̂}.
Proof: Due to the second-order sufficient conditions

for the equality constrained minimization problem,
∇2

xxL(h(t), λ(h(t), t), t) is positive definite on T t
h(t) for

all t ∈ [0,∞), meaning that for every nonzero vector
y ∈ T t

h(t), there exists a positive constant c̄ such that

y∇2
xxL(h(t), λ, t)y > c̄‖y‖2. Since P(h(t), t) is the

orthogonal projection matrix onto the tangent plane T t
h(t),

we have y∇2
xxL(h(t), λ(h(t), t), t)P(h(t), t)y > c̄‖y‖2 for

all y ∈ T t
h(t) and y 
= 0, and y∇2

xxL(h(t), λ(h(t), t), t)

P(h(t), t)y = 0 for all y /∈ T t
h(t). Taking the first-order Taylor

expansion of ∇xL(x, λ(x, t), t) with respect to x around h(t)
and using the following result from [47, Corollary 1]:

∂

∂x
∇xL(x, λ(x, t), t)

∣∣
x=h(t)

= ∇2
xxL(h(t), λ(h(t), t), t)

× P(h(t), t)

it yields that

e(t)
∇xL(e(t) + h(t), λ, t) = e(t)
∇xL(h(t), λ, t)

+e(t)
∇2
xxL(h(t), λ, t)P(h(t), t)e(t) + o(e(t)3)

= e(t)
∇2
xxL(h(t), λ, t)P(h(t), t)e(t) + o(e(t)3).

From Lemma 6 in the online report [48], we know that
∇2

xxL(x, λ, t)P(x, t) is continuous in x and t. In addition,
g(x, t) is also continuous in x and t. As a result, there exist
positive constants r̂ and ĉ such that

e(t)
∇xL(e(t) + h(t), λ, t) ≥ ĉ ‖e(t)‖2

for all e(t) ∈ {e+ h(t) ∈ M(t) : ‖e‖ ≤ r̂}. �
Definition 4: Consider arbitrary positive scalars c and r. The

Lagrange function L(x, λ, t) with λ given in (3) is said to be
locally (c, r)-one-point strongly convex with respect to x around
the local minimum trajectory h(t) in the feasible set M(t) if

e
∇xL(e+ h(t), λ(e+ h(t), t), t) ≥ c ‖e‖2 (8)

for all e ∈ DM(t) and t ∈ [0,∞), where DM(t) = {e+ h(t) ∈
M(t) : ‖e‖ ≤ r}. The region DM(t) = {e+ h(t) ∈ M(t) :
‖e‖ ≤ r} is called the region of locally (c, r)-one-point strong
convexity of the Lagrange function L(x, λ, t) around h(t) in the
feasible set M(t).

Remark 2: The Lagrange function L(x, λ, t) with λ given
in (3) being locally (c, r)-one-point strongly convex with
respect to x around h(t) is equivalent to the vector field
P(x, t)∇xf(x(t), t) being locally (c, r)-one-point strongly
monotone with respect to x around h(t).

B. Derivation of Time-Varying Projected Gradient Flow
System

In practice, one can only hope to sequentially solve the time-
varying optimization problem (1) at some discrete time instances

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 28,2024 at 18:03:38 UTC from IEEE Xplore.  Restrictions apply. 



DING et al.: TIME-VARIATION IN ONLINE NONCONVEX OPTIMIZATION ENABLES ESCAPING FROM SPURIOUS LOCAL MINIMA 161

0 = τ0 < τ1 < τ2 < τ3 < . . . as follows:

min
x∈Rn

f(x, τi), s.t. g(x, τi) = 0, i = 1, 2, . . . . (9)

In many real-world applications, it is neither practical nor re-
alistic to have solutions that abruptly change over time. To meet
this requirement, we impose a soft constraint to the objective
function by penalizing the deviation of its solution from the one
obtained in the previous time step. This leads to the following
sequence of optimization problems with proximal regularization
(except for the initial optimization problem):

min
x∈Rn

f(x, τ0) (10a)

s.t. g(x, τ0) = 0

min
x∈Rn

f(x, τi) +
α

2(τi − τi−1)

∥∥x− x∗
i−1

∥∥2
s.t. g(x, τi) = 0, i = 1, 2, . . . (10b)

where x∗
i−1 denotes an arbitrary local minimum of the mod-

ified optimization problem (10) obtained using a local search
method at time iteration i− 1. A local optimal solution sequence
x∗
0, x

∗
1, x

∗
2, . . . is said to be a discrete local trajectory of the

sequential regularized optimization (10). The parameter α is
called inertia because it acts as a resistance to changes x at time
step τi with respect to x at the previous time step τi−1. Note
that α could be time-varying (and adaptively changing) in the
analysis of this article, but we restrict our attention to a fixed
regularization term to simplify the presentation.

Under Assumption 3, all solutions x∗ of (10b) must satisfy
the KKT conditions

0 = ∇xf(x
∗
i , τi) + α

x∗
i − x∗

i−1

τi − τi−1
+ Jg(xi, τi)


λ̄i (11a)

0 = g(xi, τi) (11b)

where λ̄i’s are the Lagrange multipliers for the sequence of
optimization problems with proximal regularization in (10).
Similar to [22], we can write the right-hand side of the constraint
(11b) as

g(xi, τi)− g(xi, τi−1) + g(xi, τi−1)− g(xi−1, τi−1)

τi − τi−1
. (12)

Since the function f(x, t) and g(x, t) are nonconvex in general,
the problem (10) may not have a unique solution x∗

i . In order
to cope with this issue, we study the continuous-time limit of
(11) as the time step τi+1 − τi diminishes to zero. This yields
the following time-varying ordinary differential equations:

0 = ∇xf(x(t), t) + αẋ(t) + Jg(x(t), t)

λ̄(t) (13a)

0 = Jg(x(t), t)ẋ(t) + g′(x(t), t) (13b)

where g′ = ∂g(x,t)
∂t denotes the partial derivative of g with re-

spect to t. Since Jg(x(t), t)Jg(x(t), t)

 is invertible, we have

0 = (Jg(x(t), t)Jg(x(t), t)

)−1Jg(x(t), t)∇xf(x(t), t)

− α(Jg(x(t), t)Jg(x(t), t)

)−1g′(x(t), t) + λ̄(t). (14)

Therefore, λ̄(t) can be written as a function of x, t, and α

λ̄(t) = − (Jg(x(t), t)Jg(x(t), t)

)−1Jg(x(t), t)∇xf(x(t), t)

+ α(Jg(x(t), t)Jg(x(t), t)

)−1g′(x(t), t)

= λ(x(t), t) + α(Jg(x, t)Jg(x, t)

)−1g′(x, t). (15)

We alternatively denote λ̄(t) as λ̄(x(t), t, α). When α = 0, we
have λ̄(x(t), t, α) = λ(x(t), t) and the differential (13) reduces
to the algebraic (2), which is indeed the first-order KKT condi-
tion for the unregularized time-varying optimization (1). When
α > 0, substituting λ̄(x(t), t, α) into (13a) yields the following
time-varying ODE:

ẋ(t) = − 1

α
P(x(t), t)∇xf(x(t), t)−Q(x(t), t)g′(x(t), t)

(P-ODE)
where Q(x(t), t) = Jg(x(t), t)


(Jg(x(t), t)Jg(x(t), t)

)−1.

In terms of the Lagrange functional, (P-ODE) can be written
as

ẋ = − 1

α
∇xL(x, λ̄, t) = − 1

α
∇xL(x, λ, t)−Q(x, t)g′(x, t).

(16)
Here, ∇xL(x, λ̄, t) means first taking the partial gradient with
respect to the first argument and then using the formula (15)
for λ̄. It can be shown that if the initial point of (P-ODE) is in
the feasible set M(t0), the solution of (P-ODE) will stay in the
feasible set M(t).

Lemma 3: Suppose that the solution x(t, t0, x0) of (P-ODE)
is defined in [t0,∞) with the initial point x0. If x0 ∈ M(t0),
then the solution x(t, t0, x0) belongs to M(t) for all t ≥ t0.

Proof: On examining the evolution of g(x(t), t) along the
flow of the system (P-ODE), we obtain

ġ(x(t), t) = Jg(x(t), t)ẋ(t) + g′(x(t), t) = 0.

Hence, g(x(t0), t0) = g(x(t, t0, x0), t) for all t ≥ t0. �
Therefore, as long as the initial point of (P-ODE) is in the

feasible set M(t0), the abovementioned lemma guarantees that
we can analyze the stability of (P-ODE) using the standard Lya-
punov’s theorem without worrying about the feasibility of the
solution. Whenα > 0, we will show that for any initial point x0,
(P-ODE) has a unique solution defined for all t ∈ It ⊆ [0,∞)
if there exists a local minimum trajectory h(t) such that the
solutions of (P-ODE) lie in a compact set around h(t)1.

Theorem 1 (Existence and uniqueness): Under Assumptions
1–4 and given any initial point x0 ∈ M(t0), suppose that there
exists a local minimum trajectory h(t) with the property that
x(t)− h(t) lies entirely in D for all t ∈ It ⊆ [0,∞) where D is
a compact subset of Rn containing x0 − h(t0) and x(t) denotes
the solution of (P-ODE) with the initial point x0. Then, (P-ODE)
has a unique solution starting fromx0 that is defined for all t ≥ 0.

Proof: Since h(t) is differentiable by Lemma 1, we can use
the change of variables e(t) = x(t)− h(t) to rewrite (P-ODE)

1In Theorems 3 and 4, the compactness assumption is included in the definition
of the dominant trajectory. In Theorem 5, checking the compactness assumption
can be carried out via the Lyapunov’s method without solving the differential
equation due to the one-point strong convexity condition around h(t).
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as

ė(t) = − 1

α
P(e(t) + h(t), t)∇xf(e(t) + h(t), t)

−Q(e(t) + h(t), t)g′(e(t) + h(t), t)− ḣ(t). (17)

In light of the conditions in Theorem 1, the solution of (17) stays
in a compact set. Then, by Lemma 3 and [36, Th. 3.3], the (17)
has a unique solution. Thus, (P-ODE) must also have a unique
solution. �

In online optimization, it is sometimes desirable to predict
the solution at a future time (namely, τi) only based on the
information at the current time (namely, τi−1). This can be
achieved by implementing the forward Euler method to obtain
a numerical approximation to the solution of (P-ODE)

x̄∗
i = x̄∗

i−1 − (τi − τi−1)

(
1

α
P(x̄∗

i−1, τi−1)∇xf(x̄
∗
i−1, τi−1)

+Q(x̄∗
i−1, τi−1)g

′(x̄∗
i−1, τi−1)

)
(18)

(note that x̄∗
0, x̄

∗
1, x̄

∗
2, . . . show the approximate solutions). The

following theorem explains the reason behind studying the
continuous-time problem (P-ODE) in the remainder of this
article.

Theorem 2 (Convergence): Under Assumptions 1–4 and
given a local minimum x∗

0 of (10a), as the time difference
Δτ = τi+1 − τi approaches zero, any sequence of discrete local
trajectories (xΔ

k ) converges to the (P-ODE) in the sense that for
all fixed T > 0

lim
Δτ→0

max
0≤k≤ T

Δτ

∥∥xΔ
k − x(τk, τ0, x

∗
0)
∥∥ = 0 (19)

and any sequence of (x̄Δ
k ) updated by (18) converges to the

(P-ODE) in the sense that for all fixed T > 0

lim
Δτ→0

max
0≤k≤ T

Δτ

∥∥x̄Δ
k − x(τk, τ0, x

∗
0)
∥∥ = 0. (20)

Proof: The first part follows from [23, Th. 2]. For the second
part, a direct application of the classical results on conver-
gence of the forward Euler method [49] immediately shows that
the solution of (P-ODE) starting at a local minimum of (10a)
is the continuous limit of the discrete local trajectory of the
sequential regularized optimization (10). �

Theorem 2 guarantees that the solution of (P-ODE) is a rea-
sonable approximation in the sense that it is the continuous-time
limit of both the solution of the sequential regularized opti-
mization problem (10) and the solution of the online updating
scheme (18). For this reason, we only study the continuous-time
problem (P-ODE) in the remainder of this article.

C. Jumping, Tracking, and Escaping

In this article, the objective is to study the case where there
are at least two local minimum trajectories of the online time-
varying optimization problem. Consider two local minimum tra-
jectories h1(t) and h2(t). We provide the definitions of jumping,
tracking and escaping below.

Definition 5: It is said that the solution of (P-ODE) (v,u)-
jumps from h1(t) to h2(t) over the time interval [t1, t2] if there

Fig. 3. Illustration of jumping and tracking.

exist u > 0 and v > 0 such that

Bv(h1(t1)) ∩M(t1) ⊆ RAM(t1)(h1(t1)) (21a)

Bu(h2(t2)) ∩M(t2) ⊆ RAM(t2)(h2(t2)) (21b)

∀x1 ∈ Bv(h1(t1)) ∩M(t1)

=⇒ x(t2, t1, x1) ∈ Bu(h2(t2)) ∩M(t2). (21c)

Definition 6: Given x0 ∈ M(t0), it is said that x(t, t0, x0)
u-tracks h2(t) if there exist a finite time T > 0 and a constant
u > 0 such that

x(t, t0, x0) ∈ Bu(h2(t)) ∩M(t), ∀t ≥ T (22a)

Bu(h2(t)) ∩M(t) ⊆ RAM(t)(h2(t)), ∀t ≥ T. (22b)

In this article, the objective is to study the scenario
where a solution x(t, t0, x0) tracking a poor solution h1(t) at
the beginning ends up tracking a better solution h2(t) after some
time. This needs the notion of “escaping” which is a combination
of jumping and tracking.

Definition 7: It is said that the solution of (ODE) (v,u)-escapes
from h1(t) to h2(t) if there exist T > 0, u > 0 and v > 0 such
that

Bv(h1(t0)) ∩M(t0) ⊆ RAM(t0)(h1(t0)) (23a)

Bu(h2(t)) ∩M(t) ⊆ RAM(t)(h2(t)), ∀t ≥ T (23b)

∀x0 ∈ Bv(h1(t0)) ∩M(t0) =⇒
x(t, t0, x0) ∈ Bu(h2(t)) ∩M(t), ∀t ≥ T. (23c)

Fig. 3 illustrates the definitions of jumping and tracking for
Example 1 with α = 0.3 and b = 5. The objective of this article
is to study when the solution of (P-ODE) started at a poor local
minimum at the initial time jumps to and tracks a better (or
global) minimum of the problem after some time. In other words,
it is desirable to investigate the escaping property fromh1(t) and
h2(t).

III. CHANGE OF VARIABLES

Given two isolated local minimum trajectories h1(t), h2(t).
One may use the change of variablesx(t, t0, x0)= e(t, t0, e0) +
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h2(t) to transform (P-ODE) into the form

ė(t) = − 1

α
P(e(t) + h2(t), t)∇xf(e(t) + h2(t), t)−

Q(e(t) + h2(t), t)g
′(e(t) + h2(t), t)− ḣ2(t) (24a)

= − 1

α
∇x (L (e(t) + h2(t), λ̄(e(t) + h2(t), t, α), t)

+αḣ2(t)

e(t)

)
. (24b)

We use e(t, t0, e0) to denote the solution of this differential
equation starting at time t = t0 with the initial point e0 = x0 −
h2(t0) and use − 1

αU(e(t), t, α) to denote the right-hand side
of (24). Note that h1(t) and h2(t) are local solutions of (1)
and as long as (1) is time-varying, these functions cannot
satisfy (P-ODE) in general. We denote Mh(t) := {e ∈ Rn :
g(e+ h(t), t) = 0}.

A. Unconstrained Optimization Landscape After a
Change of Variables

In this section, we study the unconstrained case to enable a
better visualization of the optimization landscape. In the uncon-
strained case, (24) is reduced to

ė(t) = − 1

α
∇xf(e(t) + h2(t), t)− ḣ2(t). (25)

1) Inertia Encouraging the Exploration: The first term
∇xf(e+ h2(t), t) in (25) can be understood as a time-varying
gradient term that encourages the solution of (25) to track h2(t),
while the second term ḣ2(t) represents the inertia from this
trajectory. In particular, if ḣ2(t) points toward outside of the
region of attraction of h2(t) during some time interval, the term
ḣ2(t) acts as an exploration term that encourages the solution of
(ODE) to leave the region of attraction of h2(t). The parameter
α balances the roles of the gradient and the inertia.

In the extreme case where α goes to infinity, e(t) converges to
−h2(t) and x(t) approaches a constant trajectory determined by
the initial pointx0; whenα is sufficiently small, the time-varying
gradient term dominates the inertia term and the solution of
(ODE) would track h2(t) closely. With an appropriate proximal
regularizationα that keeps the balance between the time-varying
gradient term and the inertia term, the solution of (ODE) could
temporarily track a local minimum trajectory with the potential
of exploring other local minimum trajectories.

2) Inertia Creating a One-Point Strongly Convex Land-
scape: The differential (25) can be written as

ė(t) = − 1

α
∇e

(
f(e(t) + h2(t), t) + αḣ2(t)


e(t)
)
. (26)

This can be regarded as a time-varying gradient flow sys-
tem of the original objective function f(e+ h2(t), t) plus a
time-varying perturbation αḣ2(t)


e. During some time interval
[t1, t2], the time-varying perturbation αḣ2(t)


e may enable
the time-varying objective function f(e+ h2(t), t) + αḣ2(t)


e
over a neighborhood of h1(t) to become one-point strongly
convexified with respect to h2(t). Under such circumstances,
the time-varying perturbation αḣ2(t)


e prompts the solution

of (26) starting in a neighborhood of h1(t) to move towards a
neighborhood of h2(t). Before analyzing this phenomenon, we
illustrate the concept in an example.

Consider again Example 1 and recall that f̄(x) has 2 lo-
cal minima at x = −2 and x = 1. By taking b = 5, h1(t) =
−2 + 5 sin(t) andh2(t) = 1 + 5 sin(t), the differential (26) can
be expressed as ė(t) = − 1

α∇e(f̄(1 + e(t)) + 5α cos(t)e(t)).
The landscape of the new time-varying function f̄(1 + e) +
5α cos(t)e with the variable e is shown for two cases α = 0.3
and α = 0.1 in Fig. 4. The red curves are the solutions of (26)
starting from e = −3. One can observe that when α = 0.3, the
new landscape becomes one-point strongly convex around h2(t)
over the whole region for some time interval, which provides
(26) with the opportunity of escaping from the region around
h1(t) to the region around h2(t). However, when α = 0.1, there
are always two locally one-point strongly convex regions around
h1(t) and h2(t) and, therefore, (26) fails to escape the region
around h1(t).

To further inspect the case α = 0.3, observe in Fig. 5(a)
that the landscape of the objective function f̄(1 + e) +
1.5 cos(0.85π)e shows that the region around the spurious local
minimum trajectoryh1(t) is one-point strongly convexified with
respect to h2(t) at time t = 0.85π. This is consistent with
the fact that the solution of ė = − 1

0.3∇xf̄(1 + e)− 5 cos(t)
starting from e = −3 jumps to the neighborhood of 0 around
time t = 0.85π, as demonstrated in Fig. 5(c).

Furthermore, if the time interval [t1, t2] is large enough to
allow transitioning from a neighborhood of h1(t) to a neigh-
borhood of h2(t), then the solution of (26) would move to
the neighborhood of h2(t). In contrast, the region around
1 + b sin(t) is never one-point strongly convexified with respect
to −2 + b sin(t), as shown in Fig. 5(b).

From the right-hand side of (26), it can be inferred that if
the gradient of f(·, t) is relatively small around some local
minimum trajectory, then its landscape is easier to be reshaped
by the time-varying linear perturbation αḣ2(t)


e. The local
minimum trajectory in a neighborhood with small gradients
usually corresponds to a shallow minimum trajectory in which
the trajectory has a relatively flat landscape and a relatively small
region of attraction. Thus, the one-point strong convexication
introduced by the time-varying perturbation could help escape
the shallow minimum trajectories.

B. Dominant Trajectory

In this section, we will formalize the intuitions discussed in
Section III-A. We first define the notion of the shallow local
minimum trajectory.

Definition 8: Consider a positive number α and
assume that ḣ1(t) is L-Lipschitz continuous. It is said
that the local minimum trajectory h1(t) is α-shallow
during the time period [t0, t0 + δ] if ε > E(α) + Lδ and
r ≤ 1

2δ(ε− E(α)− Lδ), where ε = supt∈[t0,t0+δ] ‖ḣ1(t)‖,
r = supt∈[t0,t0+δ] supx(t)∈RAM(t)(h1(t)) ‖x(t)− h1(t)‖,
E(α) = supt∈[t0,t0+δ] supx(t)∈RAM(t)(h1(t)) ‖ 1

α∇xL(x, λ̄, t)‖,
and 1

α∇xL(x, λ̄, t) is defined in (16).
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Fig. 4. Illustration of time-varying landscape after change of variables for Example 1.

Fig. 5. Illustration of one-point strong convexification for Example 1.

In other words, a local minimum trajectory is shallow if it
has a large time variation but a small region of attraction. We
next show that whenever a local minimum trajectory h1(t) is
shallow during some time interval, the solution of (P-ODE)
starting anywhere in the region of attraction of h1(t) will leave
its region of attraction at some time.

Lemma 4: If the local minimum trajectory h1(t) is α-shallow
during [t0, t0 + δ], then for any x(t0) ∈ RAM(t0)(h1(t0)),
then there exists a time t ∈ [t0, t0 + δ] such that x(t) /∈
RAM(t)(h1(t)).

Proof: Let b(t0) be the unit vector − ḣ1(t0)

‖ḣ1(t0)‖ . One can write

−ḣ1(t)

b(t0) ≥ −ḣ1(t0)


b(t0)− L|t− t0| ≥ ε− Lδ := ε′.

For any t ∈ [t0, t0 + δ] and e(t) ∈ RAM(t)(h1(t)), we have

(ẋ(t)− ḣ1(t))

b(t0) = − 1

α
∇xL(x, λ̄, t)


b(t0)− ḣ1(t)

b(t0)

≥ ε′ −
∥∥∥∥ 1α∇xL(x, λ̄, t)

∥∥∥∥ ≥ ε′ − E.

Hence,

r ≥ ‖x(t0 + δ)− h1(t0 + δ)‖
≥ (x(t0 + δ)− h1(t0 + δ))
b(t0)

≥ (x(t0)− h1(t0))

b(t0) +

∫ t0+δ

t0

(ε′ − E)dt

≥ − r + (ε′ − E)δ.

The abovementioned contradiction completes the proof. �
On the one hand, Lemma 4 shows that any shallow local min-

imum trajectory is unstable in the sense that the time-variation
in the minimum trajectory will force the solution of (P-ODE)
to leave its region of attraction. If the shallow local minimum
trajectory happens to be a non-global local solution, then the
solution of (P-ODE), acting as a tracking algorithm, will help
avoid the bad local solutions for free. On the other hand, Lemma
4 does not specify where the solution of (P-ODE) will end up
after leaving the region of attraction of a shallow local minimum
trajectory. Simulations (such as those provided in Sections III-A
and V) suggest that, with some appropriate α, the solution of
(P-ODE) may move towards a nearby local minimum trajectory
that has an enlarged region of one-point strong convexity. This
leads to the following definition of the region of the domination
and the dominant local minimum trajectory.

Definition 9: Given two local minimum trajectories h1(t)
and h2(t), suppose that the time-varying Lagrange function
L(x, λ, t) with λ given in (3) is locally (c2, r2)-one-point
strongly convex with respect to x around h2(t) in the region
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Fig. 6. Illustration of Definition 9: the region of domination.

Mh2(t) ∩ Br2(0). A set Dv,ρ,r2 is said to be the region of
domination for h2(t) with respect to h1(t) if it satisfies the
following properties.

1) Dv,ρ,r2 is a compact subset such that

e1 ∈ Dv,ρ,r2 ⇒ e(t, t1, e1) ∈ Dv,ρ,r2 , ∀t ∈ [t1, t2]
(27)

where e(t, t1, e1) is the solution of (24) staring from the
feasible initial point e1 ∈ Mh2(t1) at the initial time t1.

2) Dv,ρ,r2 ⊇ D′
v ∪ Bρ(0) where

D′
v = {e1 ∈ Rn : e1 + h2(t1) ∈ M(t1) ∩ Bv(h1(t1))

⊆ RAM(t1)(h1(t1))}
ρ ≥ sup

t∈[t1,t2]
sup

ē(t):‖ē(t)‖<r2,
0=U(ē(t),t,α)

‖ē(t)‖ . (28)

The condition (27) is a set invariance property, which requires
that the solution of (24) starting from an initial point in Dv,ρ,r2

stays in Dv,ρ,r2 during the time period [t1, t2]. For the visual-
ization of Dv,ρ,r2 , Bρ and D′

v in Definition 9, we consider again
Example 1. In Fig. 6, the red curve corresponds to the landscape
of the function f̄(1 + e) + 1.5 cos(0.85π)e, e = 0 corresponds
to h2(t) and e = −3 corresponds to h1(t). Bρ is a region around
h2(t) containing all zeros of 0 = U(·, t, α) during a time period
around 0.85π and D′

v is a neighborhood around h1(t). In this
example, the region of domination forh2(t)with respect toh1(t)
is Dv,ρ,r2 = [−4, 1] which contains Bρ and D′

v if h1(t) if it also
satisfies (27).

Definition 10: It is said that h2(t) is a (α,w)-dominant
trajectory with respect to h1(t) during the time period [t1, t2]
over the region Dv,ρ,r2 if the time variation of h2(t) makes the
time-varying function U(e(t), t, α) become one-point strongly
monotone over Dv,ρ,r2 , i.e.,

U(e(t), t, α)
 (e(t)− ē(t)) ≥ w ‖e(t)− ē(t)‖2

∀e(t) ∈ Dv,ρ,r2 ∩M(t), t ∈ [t1, t2] (29)

where w > 0 is a constant and ē(t) is defined in (28).
Note that h2(t) being a dominant trajectory with respect to

h1(t) is equivalent to the statement that the inertia of h2(t)

creates a strongly convex landscape over Dv,ρ,r2 , as discussed
in Section III-A.

Remark 3: The intuition behind Definition 10 is that if the
time variation in the time-varying optimization could make
the landscape after the change of variables become one-point
strongly convex with respect to h2(t) in a neighborhood includ-
ing both h1(t) and h2(t), then the minimum trajectory h2(t) is
dominant (with respect to h1(t)).

C. Role of Temporal Variations of the Constraints

From the perspective of the landscape of the Lagrange func-
tional, (24b) can be regarded as a time-varying gradient flow
system of the Lagrange functional L(e(t) + h2(t), λ̄(e(t) +
h2(t), t, α), t) (the partial gradient is taken with respect to
the first argument of L) plus a linear time-varying perturba-
tion αḣg

2(t)

e(t). Besides the linear time-varying perturbation

αḣg
2(t)


e(t) induced by the inertia of the minimum trajectory
similar to the unconstrained case, the constraints’ temporal
variation g′(·, t) plays the role of shifting the Lagrange mul-
tiplier from λ in (3) to λ̄ in (15), which results in a nonlinear
time-varying perturbation of the landscape of the Lagrange
functional.

From the perspective of the perturbed gradient, the con-
straints’ temporal variation g′(·, t) perturbs the projected gradi-
ent P(·, t)∇xf(·, t) in an orthogonal direction Q(·, t)g′(·, t) to
drive the trajectory of (24a) towards satisfying the time-varying
constraints.

Lemma 5: At any given time t, the vector P(x, t)∇xf(x, t)
is orthogonal to the vector Q(x, t)g′(x, t).

Proof: Recall that P(x, t) is the orthogonal projection matrix
on the tangent plane of g(x(t), t) at the point x(t) after the
freezing time t. Thus, we have P(x, t)∇xf(x, t) ∈ T t

x. For the
vector Q(x, t)g′(x, t), it can be shown that

P(x, t)Q(x, t)g′(x, t) = 0.

This implies that the orthogonal projection of the vec-
tor Q(x, t)g′(x, t) onto the tangent plane T t

x is 0. Thus,
Q(x, t)g′(x, t) must be orthogonal to T t

x. �
Therefore, in the equality-constrained problem, the time-

varying projected gradient flow system after a change of
variables in (24a) can be regarded as a composition of a
time-varying projected term P(e+ h2(t), t)∇xf(e+ h2(t), t),
a time-varying constraint-driven term Q(e+ h2(t), t)g

′(e+
h2(t), t) and an inertia term ḣ2(t) due to the time variation of
the local minimum trajectory.

D. Unified View for Unconstrained and
Equality-Constrained Problems

By introducing the Lagrange functional in (5) and (16), we
can unify the analysis of how the temporal variation and the
proximal regularization help reshape the optimization landscape
and potentially make the landscape become one-point strongly
convex over a larger region, for both unconstrained and equal-
ity constrained problems. This unified view is illustrated in
Table I.
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TABLE I
UNIFIED VIEW FOR UNCONSTRAINED AND EQUALITY-CONSTRAINED PROBLEMS

IV. MAIN RESULTS

In this section, we study the jumping, tracking and escaping
properties for the time-varying nonconvex optimization.

A. Jumping

The following theorem shows that the solution of (P-ODE)
could jump to the dominant trajectory as long as the time-interval
of such domination is large enough.

Theorem 3 (Sufficient conditions for jumping from h1(t) to
h2(t)): Suppose that the local minimum trajectory h2(t) is a
(α,w)-dominant trajectory with respect to h1(t) during [t1, t2]
over the region Dv,ρ,r2 . Let e1 ∈ D′

v be the initial point of (24),
and consider ē(t) defined in (28). Assume that U(e, t, α) is non-
singular for all t ∈ [t1, t2] and e ∈ Dv,ρ,r2 and there exists a
constant θ ∈ (0, 1) such that

t2 − t1 ≥ max

⎧⎨
⎩ αρ

(r2 − ρ)θw
,
α ln

(
‖e1−ē(t1)‖

r2−ρ

)
(1− θ)w

⎫⎬
⎭ . (30)

Then, the solution of (P-ODE) will (v, r2)-jump from h1(t) to
h2(t) over the time interval [t1, t2].

Proof: First, notice that if U(e, t, α) is uniformly non-
singular for all t ∈ [t1, t2] and e ∈ Dv,ρ,r2 , then ē(t) defined in
(28) is continuously differentiable for t ∈ [t1, t2]. Then, notice
that every solution of (24) with an initial point in Dv,ρ,r2 ∩
M(t1) will remain in Dv,ρ,r2 . It follows from Theorem 1 that
(24) has a unique solution defined for all t ∈ [t1, t2] whenever
e1 ∈ Dv,ρ,r2 ∩M(t1).

We take V (e(t), t) = 1
2‖e(t)− ē(t)‖2 as the Lyapunov func-

tion for the system (24). Because of Lemma 3, any solution
of (24) stating in M(t1) will remain in M(t) for all t ≥ t1.
Therefore, the derivative of V (e(t), t) along the trajectories of
(24) in M(t) can be expressed as

V̇ = (e(t)− ē(t))

(
− 1

α
U(e(t), t, α)

)

− (e(t)− ē(t))
 ˙̄e(t), ∀e(t) ∈ Dv,ρ,r2 ∩Mh2(t)

≤ − w

α
‖e(t)− ē(t)‖2 + ‖ ˙̄e(t)‖ ‖e(t)− ē(t)‖

∀e(t) ∈ Dv,ρ,r2 ∩Mh2(t)

≤ − (1− θ)
w

α
‖e(t)− ē(t)‖2 − θ

w

α
‖e(t)− ē(t)‖2

+ δ ‖e(t)− ē(t)‖ , ∀e(t) ∈ Dv,ρ,r2 ∩Mh2(t)

≤ − (1− θ)
w

α
‖e(t)− ē(t)‖2 , ∀e(t) ∈{

e(t) ∈ Dv,ρ,r2 ∩Mh2(t) : ‖e(t)− ē(t)‖ ≥ αδ

θw

}
(31)

where δ := supt∈[t1,t2] ‖ ˙̄e(t)‖. By taking e1 ∈ D′
v ∩M(t1),

since Dv,ρ,r2 satisfies the condition (27), the solution of (24)
starting from e1 will stay in Dv,ρ,r2 . Thus, the bound in (31)
is valid. To ensure that the trajectory of (24) enters the time-
varying set Br2−ρ(ē(t)), it is sufficient to have αδ

θw ≤ r2 − ρ

orα ≤ (r2−ρ)θw
δ . Since δ = supt∈[t1,t2] ‖ ˙̄e(t)‖ ≥ ρ

t2−t1
. We can

further bound α as α ≤ (r2−ρ)θw(t2−t1)
ρ which is equivalent to

t2 − t1 ≥ αρ
(r2−ρ)θw .

Now, it is desirable to show that if the time interval [t1, t2] is
large enough, the solution of (24a) will enter the time-varying set
Br2−ρ(ē(t)) with an exponential convergence rate. Since V̇ (·, ·)
is negative in Γ(t) := {e ∈ Dv,ρ,r2 ∩Mh2(t) : ‖e− ē(t)‖ ≥
αδ
θw} and because of (27), a trajectory starting from Γ(t1) must
stay in Dv,ρ,r2 and move in a direction of decreasing V (e, t).
The functionV (e, t)will continue decreasing until the trajectory
enters the set {e ∈ Dv,ρ,r2 ∩Mh2(t) : ‖e− ē(t)‖ ≤ αδ

θw} or
until time t2. Let us show that the trajectory enters Br2−ρ(ē(t))

before t2 if t2 − t1 > α
w(1−θ) ln(

‖e1−ē(t1)‖
r2−ρ ). Since V (e(t), t) =

1
2‖e(t)− ē(t)‖2, (31) can be written as

V̇ (e(t), t) ≤ −(1− θ)
2w
α

V (e(t), t),

∀e ∈
{
e ∈ Dv,ρ,r2 ∩Mh2(t) : ‖e(t)− ē(t)‖ ≥ αδ

θw
}
}
.

By the comparison lemma [36, Lemma 3.4]

V (e(t), t) ≤ exp

{
−(1− θ)

2w
α

(t− t1)

}
V (e1, t1).

Hence,

‖e(t)− ē(t)‖ ≤ exp
{
−(1− θ)

w

α
(t− t1)

}
‖e1 − ē(t1)‖ .

The inequality ‖e(t2)− ē(t2)‖ ≤ r2 − ρ holds if t2 − t1 ≥
α

w(1−θ) ln(
‖e1−ē(t1)‖

r2−ρ ). �
We also offer an approach based on the time-averaged dy-

namics over a small time interval and name it “small interval
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averaging”2. This technique guarantees that the solution of the
time-varying differential equation (or system) will converge to
a residual set of the origin of (25), provided that: i) there is a
time interval [t1, t2] such that the temporal variation makes the
averaged objective function during this interval locally one-point
strongly convex around h2(t) not only just over a neighborhood
of h2(t) but also over a neighborhood of h1(t), ii) the original
time-varying system is not too distant from the time-invariant
averaged system, iii) [t1, t2] is large enough to allow the transi-
tion of points from a neighborhood ofh1(t) to a neighborhood of
h2(t). Therefore, the time interval [t1, t2] and the time-averaged
dynamics over this time interval serve as a certificate for jumping
from h1(t) to h2(t). In what follows, we introduce the notion of
averaging a time-varying function over a time interval [t1, t2].

Definition 11: A function Uav(e, α) is said to be the average
function of U(e, t, α) over the time interval [t1, t2] if

Uav(e, α) =
1

t2 − t1

∫ t2

t1

U(e, τ, α)dτ.

The averaged system of (24) over the time interval [t1, t2] can
be written as

ė = − 1

α
Uav(e, α). (32)

Then, (24) can be regarded as a time-invariant system
(32) with the time-varying perturbation term p(e(t), t, α) =
− 1

α (U(e(t), t, α)− Uav(e(t), α)). For the averaged system, we
can define the on-average region of dominationDv,ρ,r2 forh2(t)
with respect to h1(t) similarly as Definition 9 by replacing (28)
with

ρ ≥ sup
ē:‖ē‖<r2,0=Uav(ē,α)

‖ē‖ . (33)

The corresponding on-average (α,w)-dominant trajectory with
respect to h1(t) during [t1, t2] over the region Dv,ρ,r2 can also
be defined similarly as Definition 10 by replacing (29) with

Uav(e, α)

(e− ē) ≥ w ‖e− ē‖2

∀e ∈ Dv,ρ,r2 ∪
(∪[t1,t2]M(t)

)
(34)

where ē is defined in (33).
Theorem 4 (Sufficient conditions for jumping from h1(t) to

h2(t) using averaging): Suppose that the local minimum tra-
jectory h2(t) is a on-average (α,w)-dominant trajectory with
respect to h1(t) during [t1, t2] over the region Dv,ρ,r2 . Assume
that the following conditions are satisfied.

1) There exist some time-varying scalar functions δ1(α, t)
and δ2(α, t) such that

‖p(e(t), t, α)‖ ≤ δ1(α, t) ‖e− ē‖+ δ2(α, t) (35)

2Our averaging approach distinguishes from classic averaging methods [36],
[37], [50], [51] and the partial averaging method [52] in the sense that: 1) it is
averaged over a small time interval instead of the entire time horizon, and 2)
there is no two-time-scale behavior because there is no parameter in (25) that
can be taken sufficiently small.

for all t ∈ [t1, t2], and there exist some positive constants
η1(α) and η2(α) such that∫ t

t1

δ1(α, τ)dτ ≤ η1(α)(t− t1) + η2(α). (36)

2) The inequality

β2(α) ‖e1 − ē‖ e−β1(α)(t2−t1)

+β2(α)

∫ t2

t1

e−β1(α)(t2−τ)δ2(α, τ)dτ≤r2−ρ, ∀e1∈D′
v

(37)

holds, where β1(α) =
w
α − η1(α) > 0 and β2(α) =

eη2(α) ≥ 1.
Then, the solution of (P-ODE) will (v, r2)-jump from h1(t)

to h2(t) over the time interval [t1, t2].
Proof: Due to the space restriction, we move the proof to the

online report [48]. �
Remark 4: If the global minimum trajectory is the dominant

trajectory with respect to the spurious local minimum trajec-
tories, then Theorems 3 and 4 guarantee that the solution of
(P-ODE) will jump to the neighborhood of the global minimum
trajectory.

Remark 5: The condition in Theorem 3 and Condition 2 in
Theorem 4 mean that [t1, t2] needs to be large enough to allow
the transition of points from a neighborhood of h1(t) to a
neighborhood of h2(t). Condition 1 in Theorem 4 means that
the original time-varying system should not be too distant from
the time-invariant averaged system.

Remark 6: To make the one-point strong monotonicity con-
ditions (29) and (34) hold, the inertia parameter α cannot be too
small.

Remark 7: The locally one-point strongly convex parameter
w in (29) and (34) determines the convergence rate during
[t1, t2], which is reflected in (30) and (37).

Remark 8: In Theorem 4, to ensure that the time-invariant
partial interval averaged system is a reasonable approximation
of the time-varying system, the time interval [t1, t2] should not
be very large. On the other hand, to guarantee that the solution
of (24) has enough time to jump, the time interval [t1, t2] should
not be very small. This tradeoff is reflected in (37).

B. Tracking

In this section, we study the tracking property of the local
minimum trajectory h2(t). First, notice that if h2(t) is not
constant, the right-hand side of (P-ODE) is nonzero while the
left-hand side is zero. Therefore, h2(t) is not a solution of
(P-ODE) in general. This is because the solution of (P-ODE)
approximates the continuous limit of a discrete local trajectory of
the sequential regularized optimization problem (10). However,
to preserve the optimality of the solution with regards to the
original time-varying optimization problem without any proxi-
mal regularization, it is required to guarantee that the solution
of (P-ODE) is close to h2(t).

If the solution of (24) can be shown to be in a small residual
set around 0 on the time-varying manifold M(t), then it is
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guaranteed that x(t, t0, x0) tracks its nearby local minimum
trajectory. Notice that (24) can be regarded as a time-varying
perturbation of the system

ė = − 1

α
P(e+ h2(t), t)∇xf(e+ h2(t), t), ∀t ≥ t0. (38)

Since h2(t) is a local minimum trajectory, it is obvious that
e(t) ≡ 0 is an equilibrium point of (38). In addition, if the
time-varying Lagrange function L(x, λ, t) with λ given in (3)
is locally one-point strongly convex with respect to x around
h2(t) in the time-varying feasible set M(t), after noticing the
fact that the solution of (24) will remain in Mh2(t) if the initial
point e0 ∈ Mh2(t0) from Lemma 3, one would expect that
the solution of (24) stays in a small residual set of e = 0 if
the perturbation Q(e(t) + h2(t), t)g

′(e(t) + h2(t), t) + ḣ2(t)
is relatively small. The perturbationQ(e(t) + h2(t), t)g

′(e(t) +
h2(t), t) + ḣ2(t) being small is equivalent toα being small. The
following theorem shows that every local minimum trajectory
can be tracked for a relatively small α.

Theorem 5 (Sufficient condition for tracking): Assume that
the time-varying Lagrange function L(x, λ, t) with λ given in
(3) is locally (c2, r2)-one-point strongly convex with respect to
x around h2(t). Given γ(t) such that ‖ḣ2(t)‖ ≤ γ(t), suppose
that there exist time-varying scalar functions δ1(t) and δ2(t)
such that the perturbed gradient due to the time-variation of
constraints satisfies the inequality

‖Q(e(t) + h2(t), t)g
′(e(t) + h2(t), t)‖ ≤ δ1(t) ‖e‖+ δ2(t)

(39)
and there exist some positive constants η1 and η2 such that∫ t

t1

δ1(τ)dτ ≤ η1(t− t1) + η2. (40)

If supt≥t1(δ2(t) + γ(t)) is bounded and the following condi-
tions hold:

‖x0 − h2(0)‖ ≤ r2
eη2

(41a)

α ≤ c2r2
eη2 supt≥t1(δ2(t) + γ(t)) + η1r2

. (41b)

Then, the solution x(t, t0, x0) will r2-track h2(t). More specif-
ically, we have

‖x(t, t0, x0)− h2(t)‖ ≤ eη2 ‖e1‖ e−(
c2
α −η1)(t−t1)

+ eη2

∫ t

t1

e−(
c2
α −η1)(t−τ)(δ2(t) + γ(t))dτ ≤ r2. (42)

Proof: Consider V (e) = 1
2‖e‖2 : Br2(0) → R as the Lya-

punov function for the system (24). Because of Lemma 3, any
solution of (24) stating in M(t1) will remain in M(t) for all
t ≥ t1. The derivative of V (e) along the trajectories of (24) can
be obtained as

V̇ = e(t)

(
− 1

α
P(e(t) + h2(t), t)∇xf(e(t) + h2(t), t)

−Q(e(t) + h2(t), t)g
′(t)(e(t) + h2(t), t)− ḣg

2(t)
)

≤ − c

α
‖e(t)‖2 + δ1(t) ‖e(t)‖2 + (δ2(t) + γ(t)) ‖e(t)‖ .

Since V (e) = 1
2‖e‖2, one can derive an upper bound on V̇ as

V̇ ≤ −
[
2c

α
− 2δ1(t)

]
V + (δ2(t) + γ(t))

√
2V .

Using the same proof procedure as in Theorem 4 of the online
report [48] and by taking β1(α) =

c
α − η1 > 0 and β2 = eη2 ≥

1, it can be shown that

‖e(t)‖ ≤ β2 ‖e1‖ e−β1(α)(t−t1)

+ β2

∫ t

t1

e−β1(α)(t−τ)(δ2(t) + γ(t))dτ. (43)

To make the bound in (43) valid, we must ensure that e(t) ∈
Br2(0) for all t ≥ t1. Note that

‖e(t)‖ ≤ β2 ‖e1‖ e−β1(α)(t−t1) +
β2

β1(α)
(1− e−β1(α)(t−τ))

× sup
t≥t0

(δ2(t) + γ(t))

≤ max

{
β2 ‖e1‖ , β2

β1(α)
sup
t≥t0

(δ2(t) + γ(t))

}
.

It can be verified that the condition e(t) ∈ Br2(0) will be sat-
isfied if (41) holds. Furthermore, by e(t) ∈ Br2(0) and Theo-
rem 1, there must exist a unique solution for (P-ODE) for all
t ≥ t1. �

Remark 9: The inequality (42) implies that the smaller the
regularization parameter α is, the smaller the tracking error
x(t, t0, x0)− h2(t) is and the faster x(t, t0, x0) converges to
the neighborhood of h2(t).

Remark 10: In the case that the local minimum trajectory
h2(t) is a constant, the upper bound on α simply becomes α <
∞. This implies that if h2(t) is constant, then it will be perfectly
tracked with any regularization parameter and can not be escaped
by tuning the regularization parameter.

Remark 11: In the unconstrained case or the case with
the time-invariant constraints, δ1(t) and δ2(t) in (39) simply
become zero. Then, the tracking conditions in (41) become
‖x0 − h2(0)‖ ≤ r2 and α ≤ c2r2

supt≥t0
γ(t) , and the tracking error

bound in (42) becomes

‖e(t)‖ ≤ ‖e1‖ e−
c2
α (t−t1) +

∫ t

t1

e−
c2
α (t−τ)γ(t)dτ

≤ α supt≥t1 γ(t)

c2
.

Remark 12: After the solution of (P-ODE) has escaped the
spurious local trajectories and started tracking the globally
minimum trajectory, one may use the state-of-the-art tracking
methods in [21] and [15] to improve the tracking of the globally
minimum trajectory.

C. Escaping

Combining the results of jumping and tracking immediately
yields a sufficient condition on escaping from one local mini-
mum trajectory to a more desirable local (or global) minimum
trajectory. The proof is omitted for brevity.
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Theorem 6 (Sufficient conditions for escaping from h1(t)
to h2(t)): Given two local minimum trajectories h1(t) and
h2(t), suppose that the Lagrange function L(x, λ, t) with λ

given in (3) is locally (c2, r2)-one-point strongly convex with
respect to x around h2(t) in the time-varying feasible set
{e ∈ Rn : e+ h2(t) ∈ M(t), ‖e‖ ≤ r2} and let Bv(h1(t1)) ⊆
RAM(t1)(h1(t1)). Under the conditions of Theorem 3 or 4, if
(39)–(41) hold, then the solution of (P-ODE) will (v, r2)-escape
from h1(t) to h2(t) after t ≥ t2.

D. Discussions

Adaptive inertia: To leverage the potential of the time-
varying perturbation αQ(e(t) + h2(t), t)g

′(e(t) + h2(t), t) +
αḣ2(t) in reshaping the landscape of the Langrange function
or the objective function to become locally one-point strongly
convex in x over a large region, the regularization parameter α
should be selected relatively large. On the other hand, to ensure
that the solution of (24) and (26) will end up tracking a desirable
local (or global) minimum trajectory, Theorem 5 prescribes
small values forα. In practice, especially when the time-varying
objective function has many spurious shallow minimum tra-
jectories, this suggests using a relatively large regularization
parameter α at the beginning of the time horizon to escape
spurious shallow minimum trajectories and then switching to
a relative small regularization parameter α for reducing the
ultimate tracking error bound.

Sequential jumping: When the time-varying optimization
problem has many local minimum trajectories, the solution
of (P-ODE) or (ODE) may sequentially jump from one local
minimum trajectory to a better local minimum trajectory. To
illustrate this concept, consider the local minimum trajectories
h1(t), h2(t), . . ., hm(t), where hm(t) is a global trajectory. As-
sume that there exists a sequence of time intervals [ti1, t

i
2] for

i = 1, 2, . . . ,m− 1 such that the conditions of Theorem 3 or 4
are satisfied for hi(t) and hi+1(t) during each time interval.
Then, by sequentially deploying Theorem 3 or 4, it can be
concluded that the solution of (P-ODE) or (ODE) will jump
from h1(t) to hm(t) after t ≥ tm2 . Furthermore, if hm(t) can be
tracked with the given α, the solution of (P-ODE) or (ODE) will
escape from h1(t) to hm(t) after t ≥ tm2 .

V. NUMERICAL EXAMPLES

Example 3: Consider the nonconvex function

f̄(x) = 0.5e+ 20e−d − 20e−
√

0.5(x2
1+x2

2)+d2

− 0.5e(0.5(cos(2πx1)+cos(2πx2))).

This function has a global minimum at (0,0) with the opti-
mal value 0 and many spurious local minima. Its landscape is
shown in Fig. 7. When d = 0, this function is called the Ackley
function [53], which is a benchmark function for global opti-
mization algorithms. To make this function twice continuously
differentiable, we choose d = 0.01.

Consider the time-varying objective function f(x, t)= f̄(x−
z(t)) and the time-varying constraint g(x, t) = (x1 − z1(t))−

Fig. 7. Illustration of Example 3.

1/2(x2 − z2(t))
2 = 0, where z(t) = [24 sin(t), cos(t)]
. This

constrained time-varying optimization problem has the global
minimum trajectory [0, 0]
 + z(t) and many spurious local min-
imum trajectories. Two local minimum trajectories are h1(t) =
[1.92, 1.96]
 + z(t) andh2(t) = [0, 0]
 + z(t). It can be shown
thatL(x, λ, t) is locally (20,0.5)-one-point strongly convex with
respect to h2(t).

We take Dv,ρ,r2 = D0.04,0.01,1 = [−0.1, 2]× [−0.1, 2] in
Definition 10. The condition in (27) can be verified by checking
the signs of the derivatives of e1(t) and e2(t) along the dy-
namics (24) on the boundary points of D0.04,0.01,1 ∩Mh2(t).
Furthermore, (34) is satisfied forw = 1. Thus, h2(t) is a (0.2,1)-
dominant trajectory with respect to h1(t) during [0, π

8 ] over the
region D0.04,0.01,1.

Regarding Theorem 3, if we select θ = 0.2, the inequality (37)
is satisfied for α = 0.2 and t2 − t1 = π/8. Thus, the solution of
(P-ODE) will (0.04, 0.5)-jump from h1(t) to h2(t). Regarding
Theorem 5, δ1 and δ2 in the inequality (39) can be taken as 0
and 24

√
2 cos(t) +

√
2 sin(t), respectively. Then, the inequality

(41b) reduces to α ≤ 10√
2(242+1)

≈ 0.29, which is satisfied by

α = 0.2. Thus, the solution of (P-ODE) will 0.5-track h2(t).
Putting the abovementioned findings together, we can conclude
that the solution of (24) will (0.04,0.5)-escape from h1(t) to
h2(t).

In addition, by choosing the inertia parameter α = 0.2, the
simulation shows that for 1000 runs of random initialization with
x2(0)− z(0) ∈ [−5, 5] and x1(0) determined by the equality
constraint, all solutions of the corresponding (P-ODE) will
sequentially jump over the local minimum trajectories and end
up tracking the global trajectory after t ≥ 5π.

VI. CONCLUSION

In this article, we study the landscape of time-varying noncon-
vex optimization problems. The objective is to understand when
simple local search algorithms can find (and track) time-varying
global solutions of the problem over time. We introduce a
time-varying projected gradient flow system with controllable
inertia as a continuous-time limit of the optimality conditions
for discretized sequential optimization problems with proximal
regularization and online updating scheme. Via a change of
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variables, the time-varying projected gradient flow system is
regarded as a composition of a time-varying projected gradient
term, a time-varying constraint-driven term and an inertia term
due to the time variation of the local minimum trajectory. We
show that the time-varying perturbation term due to the inertia
encourages the exploration of the state space and reshapes the
landscape by potentially making it one-point strongly convex
over a large region during some time interval. We introduce the
notions of jumping and escaping, and use them to develop suffi-
cient conditions under which the time-varying solution escapes
from a poor local trajectory to a better (or global) minimum
trajectory over a finite time interval. We illustrate in a bench-
mark example with many shallow minimum trajectories that the
natural time variation of the problem enables escaping spurious
local minima over time. Avenues for future work include the
characterization of the class of problems in which all spurious
local minimum trajectories are shallow compared with the global
minimum trajectory.
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